Experimental Study of Mechanical Properties of Slag Geopolymer Concrete under High Temperature, Used in Road Pavement

Document Type : Research Paper


1 Ph.D. in Civil, Department of Civil Engineering, Chalous Branch, Islamic Azad University, Chalous, Iran

2 Department of Civil Engineering, Chalous Branch, Islamic Azad University, Chaloous, Iran

3 Department of Civil Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran


Providing the mechanical properties of concrete used in road paving is of great importance. In the current study, Granulated Blast Furnace Slag (GBFS) based geopolymer concrete (GPC) was used with 0-2% polyolefin fibers (POFs) and 0-8% Nano Silica (NS) to improve its structure. After curing the specimens under dry conditions at a temperature of 60 °C in an oven, they were subjected to Tensile Strength, Modulus of Elasticity and Ultrasonic Pulse Velocity (UPV) tests to evaluate their mechanical properties. All tests were performed at 90 days of age under ambient temperature (20 ℃) and high temperature (500 ℃).  The addition of NS enhanced the whole properties of the GBFS-based GPC. Addition of up to 8% NS to the GPC composition at 20% temperature improved the modulus of elasticity test results by 13.42%, tensile strength by 15.19% and UPV by 11.58%. Addition of up to 2% of POFs to the composition of GPC improved the tensile strength up to 11.76%, modulus of elasticity 07.05% and UPV drop up to 12.02%. Applying high heat to GPC samples reduced the modulus of elasticity by up to 42%, tensile strength by up to 21% and UPV by up to 46%. The effect of heat on the drop in results in control concrete is more than GPC. In the following, by conducting the Scanning Electron Microscope (SEM) analysis, a microstructure investigation was carried out on the concrete samples. In addition to their overlapping with each other, the results indicate the GPC superiority over the regular concrete.


Aïtcin, P. C. (1998). High performance concrete. CRC press.
Adak, D., Sarkar, M., & Mandal, S. (2014). Effect of nano-silica on strength and durability of fly ash based geopolymer mortar. Construction and Building Materials, 70, 453-459.‏
Ahmed1, H. U., Mohammed, A. S., Faraj, R. H., Qaidi, S. M., & Mohammed, A. A. (2022). Compressive strength of geopolymer concrete modified with nano-silica: Experimental and modeling investigations. Case Studies in Construction Materials, 16, e01036.‏
Ahmad, A., Ahmad, W., Aslam, F., & Joyklad, P. (2022). Compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques. Case Studies in Construction Materials, 16, e00840.‏
Ahmed, H. U., Mohammed, A. S., & Mohammed, A. A. (2022). Proposing several model techniques including ANN and M5P-tree to predict the compressive strength of geopolymer concretes incorporated with nano-silica. Environmental Science and Pollution Research, 1-25.‏
Asadi, I., Baghban, M. H., Hashemi, M., Izadyar, N., & Sajadi, B. (2022). Phase change materials incorporated into geopolymer concrete for enhancing energy efficiency and sustainability of buildings: a review. Case Studies in Construction Materials, e01162.‏
Albidah, A., Alqarni, A. S., Abbas, H., Almusallam, T., & Al-Salloum, Y. (2022). Behavior of Metakaolin-Based geopolymer concrete at ambient and elevated temperatures. Construction and Building Materials, 317, 125910.‏
Amin, M., Elsakhawy, Y., Abu el-hassan, K., & Abdelsalam, B. A. (2022). Behavior evaluation of sustainable high strength geopolymer concrete based on fly ash, metakaolin, and slag. Case Studies in Construction Materials, 16, e00976.‏
Allahverdi, A. L. I., Kani, E. N., & Yazdanipour, M. (2011). Effects of blast-furnace slag on natural pozzolan-based geopolymer cement. Ceramics-Silikáty, 55(1), 68-78.‏
Ahmed2, H. U., Mohammed, A. A., & Mohammed, A. S. (2022). The role of nanomaterials in geopolymer concrete composites: A state-of-the-art review. Journal of Building Engineering, 49, 104062.‏
Assaedi, H., Alomayri, T., Shaikh, F., & Low, I. M. (2019). Influence of nano silica particles on durability of flax fabric reinforced geopolymer composites. Materials, 12(9), 1459.‏
Ataei, O., Golroo, A., & Hoshghani, A. R. (2016). Evaluation of Aggregate's Size Effect on Mechanical and Physical Characteristic of Pervious Concrete Pavement. Quarterly Journal of Transportation Engineering, 8(1), 110-123.
Amouzadeh Omrani, M., & Hasirchian, M. (2020). Assessing the Effect of Steel Slag and Reclaimed Asphalt Pavement on Mechanical Properties and Pollution of Roller Compacted Concrete Pavement. Journal of Transportation Infrastructure Engineering, 6(2), 87-108. doi: 10.22075/jtie.2020.19754.1444
Bentz, D. P. (2000). Fibers, percolation, and spalling of high-performance concrete. Materials Journal, 97(3), 351-359.‏
Bakhtiyari, S., Allahverdi, A., Rais-Ghasemi, M., Zarrabi, B. A., & Parhizkar, T. (2011). Self-compacting concrete containing different powders at elevated temperatures–Mechanical properties and changes in the phase composition of the paste. Thermochimica acta, 514(1-2), 74-81.‏
Da Silva, A. C. R., Almeida, B. M., Lucas, M. M., Candido, V. S., da Cruz, K. S. P., Oliveira, M. S., ... & Monteiro, S. N. (2022). Fatigue behavior of steel fiber reinforced geopolymer concrete. Case Studies in Construction Materials, 16, e00829.‏
Deb, P. S., Sarker, P. K., & Barbhuiya, S. (2015). Effects of nano-silica on the strength development of geopolymer cured at room temperature. Construction and building materials, 101, 675-683.‏
Du, H., Du, S., & Liu, X. (2014). Durability performances of concrete with nano-silica. Construction and building materials, 73, 705-712.‏
Ekinci, E., Türkmen, İ., Kantarci, F., & Karakoç, M. B. (2019). The improvement of mechanical, physical and durability characteristics of volcanic tuff based geopolymer concrete by using nano silica, micro silica and Styrene-Butadiene Latex additives at different ratios. Construction and Building Materials, 201, 257-267.‏
Choubdar, A., Farajollahi, A., & Ameli, A. (2021). Roller Compacted Concrete with Recycled Concrete Aggregate for the Base of Pavement. Journal of Transportation Research, 18(4), 255-266. doi: 10.22034/tri.2021.142125
Gülşan, M. E., Alzeebaree, R., Rasheed, A. A., Niş, A., & Kurtoğlu, A. E. (2019). Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber. Construction and Building Materials, 211, 271-283.‏
Jitsangiam, P., Kumlai, S., & Nikraz, H. (2022). New theoretical framework for temperature-effect integration into asphalt concrete pavement life prediction with respect to Australian pavement conditions. Road Materials and Pavement Design, 23(3), 583-600.‏
Jindal, B. B., Alomayri, T., Hasan, A., & Kaze, C. R. (2022). Geopolymer concrete with metakaolin for sustainability: a comprehensive review on raw material’s properties, synthesis, performance, and potential application. Environmental Science and Pollution Research, 1-26.‏
Kanagaraj, B., Anand, N., Alengaram, U. J., Raj, R. S., & Kiran, T. (2022). Exemplification of sustainable sodium silicate waste sediments as coarse aggregates in the performance evaluation of geopolymer concrete. Construction and Building Materials, 330, 127135.‏
Kori, K., & Goliya, S. S. (2022). Use of Discrete fiber in road pavement. Materials Today: Proceedings.‏
Kuranl, Ö. F., Uysal, M., Abbas, M. T., Cosgun, T., Niş, A., Aygörmez, Y., & Al-mashhadani, M. M. (2022). Evaluation of slag/fly ash based geopolymer concrete with steel, polypropylene and polyamide fibers. Construction and Building Materials, 325, 126747.‏
‏Kong, D. L., & Sanjayan, J. G. (2010). Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cement and concrete research, 40(2), 334-339.‏
Kwan, W. H., Ramli, M., Kam, K. J., & Sulieman, M. Z. (2012). Influence of the amount of recycled coarse aggregate in concrete design and durability properties. Construction and Building Materials, 26(1), 565-573.‏
Loureiro, C. D., Moura, C. F., Rodrigues, M., Martinho, F. C., Silva, H. M., & Oliveira, J. R. (2022). Steel Slag and Recycled Concrete Aggregates: Replacing Quarries to Supply Sustainable Materials for the Asphalt Paving Industry. Sustainability, 14(9), 5022.‏
Li, W., Shumuye, E. D., Shiying, T., Wang, Z., & Zerfu, K. (2022). Eco-friendly fibre reinforced geopolymer concrete: A critical review on the microstructure and long-term durability properties. Case Studies in Construction Materials, e00894.‏
Lyu, X., Robinson, N., Elchalakani, M., Johns, M. L., Dong, M., & Nie, S. (2022). Sea sand seawater geopolymer concrete. Journal of Building Engineering, 50, 104141.‏
Mansourghanaei1, M., Biklaryan, M., & Mardookhpour, A. (2022). Experimental study of the effects of adding silica nanoparticles on the durability of geopolymer concrete. Australian Journal of Civil Engineering, 1-13.‏
Mansourghanaei2, M. (2022). Experimental evaluation of compressive, tensile strength and impact test in blast furnace slag based geopolymer concrete, under high temperature. Journal of Civil Engineering Researchers, 4(2), 12-21.
Mansourghanaei3, M. (2022). Experimental study of compressive strength, permeability and impact testing in geopolymer concrete based on Blast furnace slag. Journal of Civil Engineering Researchers, 4(3), 31-39.‏
Mansourian, A., & Samadi vik, G. (2022). Evaluation of the Effect of Fibers on Mechanical Properties of Concrete Containing Reclaimed Asphalt Pavement. Journal of Transportation Research, 19(4), 33-46. doi: 10.22034/tri.2022.337733.3035
Mehdipour, S., Nikbin, I. M., Dezhampanah, S., Mohebbi, R., Moghadam, H., Charkhtab, S., & Moradi, A. (2020). Mechanical properties, durability and environmental evaluation of rubberized concrete incorporating steel fiber and metakaolin at elevated temperatures. Journal of Cleaner Production, 254, 120126.‏
Memiş, S., & Bılal, M. A. M. (2022). Taguchi optimization of geopolymer concrete produced with rice husk ash and ceramic dust. Environmental Science and Pollution Research, 29(11), 15876-15895.‏
Nazari, A., & Sanjayan, J. G. (2015). Hybrid effects of alumina and silica nanoparticles on water absorption of geopolymers: Application of Taguchi approach. Measurement, 60, 240-246.‏
Niu, M., Zhang, P., Guo, J., & Wang, J. (2022). Effect of Municipal Solid Waste Incineration Fly Ash on the Mechanical Properties and Microstructure of Geopolymer Concrete. Gels, 8(6), 341.‏
Pedram, M., Madandoust, R., & Arabani, M. (2022). Laboratory Evaluation of the Effect of Polypropylene Fiber and SBR Latex on Improving the Mechanical Properties of Pervious Concrete. Journal of Transportation Infrastructure Engineering, 8(1), 55-73. doi: 10.22075/jtie.2022.25607.1580
Phair, J. W., & Van Deventer, J. S. J. (2002). Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers. International Journal of Mineral Processing, 66(1-4), 121-143.‏
Phoo-ngernkham, T., Chindaprasirt, P., Sata, V., Hanjitsuwan, S., & Hatanaka, S. (2014). The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Materials & Design, 55, 58-65.‏
Pilehvar, S., Cao, V. D., Szczotok, A. M., Carmona, M., Valentini, L., Lanzón, M., ... & Kjøniksen, A. L. (2018). Physical and mechanical properties of fly ash and slag geopolymer concrete containing different types of micro-encapsulated phase change materials. Construction and Building Materials, 173, 28-39.‏
Pszczola, M., Rys, D., & Jaczewski, M. (2022). Field evaluation of high modulus asphalt concrete resistance to low-temperature cracking. Materials, 15(1), 369.‏
Pradhan, S. K., Behera, N., & Palai, A. (2022). Performance Study of Pervious Concrete as a Road Pavement Infrastructure System. In Road and Airfield Pavement Technology (pp. 517-528). Springer, Cham.‏
Ryu, G. S., Lee, Y. B., Koh, K. T., & Chung, Y. S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construction and building materials, 47, 409-418.‏
Rashad, A. M. (2019). The effect of polypropylene, polyvinyl-alcohol, carbon and glass fibres on geopolymers properties. Materials Science and Technology, 35(2), 127-146.‏
Ren, W., Xu, J., & Bai, E. (2016). Strength and ultrasonic characteristics of alkali-activated fly ash-slag geopolymer concrete after exposure to elevated temperatures. Journal of Materials in Civil Engineering, 28(2), 04015124.‏
Sahmaran, M., Yurtseven, A., & Yaman, I. O. (2005). Workability of hybrid fiber reinforced self-compacting concrete. Building and Environment, 40(12), 1672-1677.‏
Sathish Kumar, V., Ganesan, N., Indira, P. V., Murali, G., & Vatin, N. I. (2022). Flexural Behaviour of Hybrid Fibre-Reinforced Ternary Blend Geopolymer Concrete Beams. Sustainability, 14(10), 5954.‏
Sazonova, S. A., Nikolenko, S. D., & Akamsina, N. V. (2022, February). Monitoring Concrete Road Pavement Damages. In IOP Conference Series: Earth and Environmental Science (Vol. 988, No. 5, p. 052054). IOP Publishing.‏
Shih, J. Y., Chang, T. P., & Hsiao, T. C. (2006). Effect of nanosilica on characterization of Portland cement composite. Materials Science and Engineering: A, 424(1-2), 266-274.‏
Shilar, F. A., Ganachari, S. V., Patil, V. B., Khan, T. Y., Almakayeel, N. M., & Alghamdi, S. (2022). Review on the relationship between nano modifications of geopolymer concrete and their structural characteristics. Polymers, 14(7), 1421.‏
Shilar, F. A., Ganachari, S. V., Patil, V. B., Khan, T. Y., & Dawood, S. (2022). Molarity activity effect on mechanical and microstructure properties of geopolymer concrete: A review. Case Studies in Construction Materials, e01014.‏
Shirgir, B., & Shirgir, V. (2019). An Experimental Study on the Abrasion Resistance of Pervious Concrete Containing Nano Sio2 in pavement. Quarterly Journal of Transportation Engineering, (), -.
Supit, S. W. M., & Shaikh, F. U. A. (2015). Durability properties of high volume fly ash concrete containing nano-silica. Materials and structures, 48(8), 2431-2445.‏
Srividya, T., PR, K. R., Sivasakthi, M., Sujitha, A., & Jeyalakshmi, R. (2022). A state-of-the-art on development of geopolymer concrete and its field applications. Case Studies in Construction Materials, 16, e00812.‏
Swanepoel J.C., Strydom C.A.: Appl. Geo. 17, 1143 (2002).
Their, J. M., & Özakça, M. (2018). Developing geopolymer concrete by using cold-bonded fly ash aggregate, nano-silica, and steel fiber. Construction and Building Materials, 180, 12-22.‏
Tiyasangthong, S., Yoosuk, P., Krosoongnern, K., Sakdinakorn, R., Tabyang, W., Phojan, W., & Suksiripattanapong, C. (2022). Stabilization of Recycled Concrete Aggregate Using High Calcium Fly Ash Geopolymer as Pavement Base Material. Infrastructures, 7(9), 117.‏
Türkmen, İ., Maraş, M. M., Karakoç, M. B., Demi̇rboğa, R., & Kantarci, F. (2013, October). Fire resistance of geopolymer concrete produced from Ferrochrome slag by alkali activation method. In 2013 International Conference on Renewable Energy Research and Applications (ICRERA) (pp. 58-63). IEEE.‏
Upadhyay, H., Mungule, M., & Iyer, K. K. (2022). Issues and challenges for development of geopolymer concrete. Materials Today: Proceedings.‏
Verma1, M., & Dev, N. (2022). Effect of liquid to binder ratio and curing temperature on the engineering properties of the geopolymer concrete. Silicon, 14(4), 1743-1757.‏
Verma2, M., Dev, N., Rahman, I., Nigam, M., Ahmed, M., & Mallick, J. (2022). Geopolymer Concrete: A Material for Sustainable Development in Indian Construction Industries. Crystals, 12(4), 514.‏
Vega A, D. L., Santos, J., & Martinez-Arguelles, G. (2022). Life cycle assessment of hot mix asphalt with recycled concrete aggregates for road pavements construction. International journal of pavement engineering, 23(4), 923-936.‏
Wei, Q., Al Ashaibi, A., Wang, Y., Albayati, A., & Haynes, J. (2022). Experimental study of temperature effect on the mechanical tensile fatigue of hydrated lime modified asphalt concrete and case application for the analysis of climatic effect on constructed pavement. Case Studies in Construction Materials, 17, e01622.‏
Wong, L. S. (2022). Durability performance of geopolymer concrete: A review. Polymers, 14(5), 868.‏
Whitehurst, E. A. (1951, February). Soniscope tests concrete structures. In Journal Proceedings (Vol. 47, No. 2, pp. 433-444).‏
Xu, X., Luo, Y., Sreeram, A., Wu, Q., Chen, G., Cheng, S., & Chen, X. (2022). Potential use of recycled concrete aggregate (RCA) for sustainable asphalt pavements of the future: A state-of-the-art review. Journal of Cleaner Production, 130893.‏
Zhang, B., & Bicanic, N. (2002). Residual fracture toughness of normal-and high-strength gravel concrete after heating to 600 C. Materials Journal, 99(3), 217-226.‏