-Ahmed, M., Khan, A., Uddin, M. and Ahmed, F. (2016) ''A new approach to solve transportation problems'', Open Journal of Optimization, Vol.5, No.1, March 2016, pp.7- 19. Doi: 10.4236/ojop.2016.51003.
-Ammar, E. E. and Khalifa, H. A. (2014) '' Study on multiobjecttive solid transportation problem with fuzzy numbers'', European Journal of Scientific Research, Vol.125, pp.7- 19.
-Anam, S., Khan, A. R., Haque, M. M. and Hadi, R. S. (2012) ''The impact of transportation cost on potato price: A case study of potato distribution in Bangladesh'', International Journal of Management, Vol.1, pp.1- 12.
-Bit, A. K., Biswal, M. P. and Alam, S. S. (1993) ''Fuzzy programming approach to multi- objective solid transportation problem'', Fuzzy Sets and Systems, Vol. 57, pp. 183- 194.
-Chanas, S. and Kuchta, D. (1996) ''A concept of the optimal solution of the transportation problem with fuzzy cost coefficients'', Fuzzy Sets and Systems, Vol. 82, pp. 299- 305.
-Charnes, A., Cooper, W. W. and Henderson (1953) ''An Introduction to Linear Programming '', John Wiley & Sons, New York.
-Dalman, H. (2018) ''Modeling optimizing of multi- item solid transportation problems with uncertain variables and uncertain entropy function'', Communication in Mathematical Modeling and Applications, Vol. 3, pp. 28- 41.
-Dantzig, G. B. (2018) ''Application of the Simplex Method to a Transportation Problem, Activity Analysis of Production and Allocation '', In: Koopmans, T. C., Ed., John Wiley& Sons, New York, 359- 373.
-Das. S. K., Goswami, A. and Alam, S. S. (1999) ''Multi- objective transportation problem with interval cost, source and destination parameters'', European Journal of Operational Research, Vol. 117, pp. 100- 112.
-Dubois, D. and Prade, H. (1980) '' Fuzzy sets and systems: theory and applications”, Academic Press, New York.
-Gabrel, V., Lacroix, M., Murat, C. and Remli, N. (2014) ''Robust location transportation problems under uncertain demands'', Discrete Applied Mathematics, Vol. 164, pp. 100- 111.
-Gupta, G. and Kumari, A. (2017) ''An efficient method intuitionistic fuzzy transportation problem of type-2'', International Journal of Applied Computational Mathematics , Vol. 3, pp.3795-3804.
-Guo, H., Wang, X. and Zhou, S. (2015) ''A transportation problem with uncertain costs and random supplies'', International Journal of e- Navigation and Maritime Economy, Vol. 2, pp.1-11.
-Gutzwiller, M. C. (1991) '' Chaos in Classical and Quantum Mechanics'', Interdisciplinary Applied Mathematics, Springer, New York, NY.
-Hamdy, A. T. (2007) ''Operations research: An introduction'', 8^{th} Edition, Pearson Prentice Hall, Upper Saddle River.
-Hitchcock, F. L. (1941) ''The distribution of a product from several source to numerous localities'', Journal of Mathematics and Physics, Vol. 20, pp.224-230.
Kasana, H. S. and Kumar, K. D.(2005) '' Introductory Operations Research: Theory and Applications '', Springer International Edition, New Delhi.
-Kaur, L., Rakshit, M. and Singh, S. (2018) '' A new approach to solve multi- objective transportation problem'', Applications and Applied Mathematics: An International Journal (AAM) Vol. 13, pp. 150- 159.
Etata, C., Satish, M. G. and Islam, M. R. (2006) '' Chaos numbers'', International Conference on Computational Intelligence for Modelling Control and Automation(CIMCA) IEEE, Sydney, Australia.
-Khan, A. R. (2011) ''A resolution of the transportation problem: An algorithm approach '', Jahangirnagar University Journal of Science, Vol. 34, pp. 49- 62.
-Kumar, R., Edalatpanah, S.A., Jha, S. and Sing,R. (2019) '' A pythagorean fuzzy approach to the transportation problem '', Complex & Intelligent Systems, Vol. 5, pp. 255- 263.
-Kundu, P., Kar, S. and Maiti, M. (2014) '' Fixed charge transportation problem with type-2 type variables '', Information Sciences, Vol. 255, pp. 170- 186.
-Li, L. and Lai, K. K. (2002) ''A fuzzy programming to the multi- objective transportation problem'', Computers and Operations Research, Vol. 27, pp. 43- 57.
-Liu, P., Yang, L., Wang, L.and Li,S. (2014) '' A solid transportation problems with type-2 fuzzy variables '', Applied Soft Computing, Vol. 24, pp. 543- 558.
-Mahewan, U. P. and Garesan, K. (2018) '' Solving fully fuzzy transportation problem using pentagonal fuzzy numbers'', National Conference on Mathematical Techniques and its Applications, (1000) 012014.
-Maity, G., Roy, S. K. and Verdegay, J. L. (2016) ''Multi- objective transportation problem with cost reliability under uncertain environment'', International Journal of Computational Intelligence Systems, Vol. 9, pp. 839- 849.
-Omar, M S. and Samir, S. S. (2003) ''A parametric study on transportation problem under fuzzy environment, '' The Journal of Fuzzy Mathematics, Vol. 11, pp. 115- 124.
-OTT, E. (2002) ''Chaos in dynamical systems'', 2^{nd} Edition, Cambridge University Press, Cambridge.
-Pandian, P. and Natarajan, G. (2003) '' A new approach for solving transportation problems with mixed constraints'', Journal of Physical Sciences, Vol. 14, pp. 53- 61.
-Peitgen, H-O., Jurgens, H. and Saupe, D. (2004) ''Chaos and Fractals'', 2^{nd} Edition, Springer, New York, NY.
-Rashid, A., Ahmed, S. S. and Uddin, Md. S. (2013) ''Development of a new heuristic for improvement of initial basic feasible solution of a balanced transportation problem'', Jahangirnagar University Journal of Mathematics and Mathematical Sciences, Vol. 28, pp. 105- 112.
-Roy, S. K. (2016) ''Transportation problem with multi- choice cost and demand and stochastic supply'', Journal of the Operations Research Society of China, Vol. 4, doi: 10. 1007/ s40305- 016-0125-3.
-Shenoy, G. V., Srivastava, U. K. and Sharma, S. C. (1991) ''Operations research for management'', 2^{nd} Edition, New Age International (P) Limited Publishers,, New Delhi.
-Strogatz, S. H. (2001) ''Nonlinear dynamics and chaos: with applications to physics'', Piology, Chemistry and Engineering, Peruses Books Group, New York, NY.
-Tada, M. and Ishii, H. (1996) ''An integer fuzzy transportation problem'', Computers & Mathematics with Applications, Vol. 31, pp. 71- 87.
-Vidhya, V. and Ganesan, K. (2018) ''Different approaches for the solution of multi- objective fuzzy transportation problems'', International Journal of Pure and Applied Mathematics, Vol. 119, pp. 373- 383.
-Zhang, B., Peng, J., Li, S. and Chen, L. (2016) '' Fixed charge solid transportation problem in uncertain environment and its algorithm'', Computers and Industrial Engineering, Vol. 102, pp. 186- 197.