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Abstract 

In this paper, a two-stage continuous p-center and p-median (namely p-centmedian) problem is developed. In the 

first step, a location problem is studied to compare the differences between the p-center and p-median by 

considering facility disruption. P-center problems are common in emergency situations with aim of minimizing 

the maximum distance between the facilities and costumers, while p-median problem aim is to minimize the total 

spent distance. Moreover, an integer linear programming is developed to deal with a time-window multi-depot 

capacitated vehicle routing problem in order to optimize the flows between facilities. This paper compares the 

mentioned p-center and p-median effects along with the vehicle routing problem as a two-step integrate problem. 

Since both steps are NP-hard, to deal with the problem in both stages a possibilistic programming, fuzzy single-

objective programming is developed and solved by an efficient algorithm, namely self-adaptive differential 

evolution algorithm. Considering demand as a fuzzy parameter is an important factor and makes the problem more 

realistic, this feature is more considerable in emergency situations such as p-center problems. To improve the 

performance of results, the Taguchi method is used. In order to validate the results of the mentioned algorithms 

of small-sized test problems are compared with GAMS, also other valid metaheuristics are developed to be 

compared with the proposed algorithm in large-sized problems. The results show the capability of algorithm to 

generate near-optimal solutions. Also, the results demonstrate the p-median problem is more volatile against 

variation in the parameters while the p-center problem is more expensive.   
 

Keywords: P-Median and P-Center problem, capacitated vehicle routing, Taguchi method, Fuzzy set, 

differential evolution. 
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1. Introduction 

Multi-facilities location-allocation problem is 

one of the most common problems in the 

literature. To determine a reasonable 

arrangement of new facilities in continuous 

space or a discrete set when a number of 

possible locations are finite (e.g., discrete 

location problem) or infinite (e.g., continuous 

problem), different approaches are proposed. In 

the last two decades, researchers have tried to 

solve continuous location problems with 

trustable solutions. A hybridized location 

optimization problem is a popular problem 

among different kind of location problems.  

The main purpose of p-median problem is to 

minimize the total spent distance. (e.g., cities or 

factories) and first introduced by [Hakimi, 

1964] while in p-center problem is to minimize 

the maximum distance as an objective function. 

p-median problems are divided in two main 

groups; namely discrete and continuous p-

median problems. In discrete problems, there 

are some pre-determined locations to be 

assigned while in continuous problems 

everywhere of solution space can be considered 

as a place for facilities. 

In other hand, a vehicle routing problem (VRP) 

is the second step of this paper to minimize the 

transportation costs between the facilities. VRP 

is the problem of visiting and serving by 

number of vehicles [Montoya-Torres et al. 

2015]. Different heuristic and meta-heuristic 

approaches are proposed to solve the p-median 

problem. An algorithm based on the new graph 

theory developed by [Rabbani and 

Yousefnejad, 2013]. A general algorithm to 

solve a wide range of continuous location 

problems proposed by [Blanco, Puerto and 

Ben-Ali, 2016]. A genetic algorithm with 

precise and fast answers. In some cases, 

continues problems can be changed to the 

discrete problems [Stanimirovic and Ciric, 

2011]. A genetic algorithm with greedy search 

to solve the p-median problem considered by 

[Neema ,Maniruzzaman and Ohgai, 2011]. A 

new genetic algorithm using greedy search with 

better efficiency to deal with continuous 

problems proposed by [Kazakovtsev et al. 

2015]. Meta-heuristic algorithms are able to 

generate near-optimal solutions, but do not 

guarantee any optimal solution. They can be 

merged with other algorithms to improve their 

efficiency [Mehrjerdi and Nadizadeh, 2013]. 

In a VRP, vehicles leave a depot in the network 

and return to the first place after completion of 

their assigned rout. This problem was firstly 

proposed in the literature by [Dantzig and 

Ramser, 1959]. A capacitated VRP (CVRP) is 

one of the most prevalent branches of the VRP, 

which considers a specific number of loads for 

every vehicle. Different approaches are 

proposed to solve the CVRP, a linear 

programming to solve the CVRP proposed by 

[Lightner-Laws et al. 2016], a metaheuristic to 

solve CVRP proposed by [Szeto, Wu and Ho, 

2011] . A Bat algorithm to solve the CVRP 

developed by [Zhou et al. 2016]. An uncertain 

CVRP which minimize the cost of vehicles, 

fuel consumption and products shortage 

presented by [Tavakkoli-Moghaddam et al. 

2016]. A capacitated location-routing problem 

is formulated as a reverse logistic system by 

using a greedy clustering method to cluster the 

costumers and ant colony system to find the 

best routs for vehicles by [Nadizadeh and 

Hosseini Nasab, 2019]. A novel model of the 

capacitated vehicle routing problem with time 

windows is developed and solved by simulated 

annealing method [Rabbani et al. 2018]   

The literature review demonstrates that there is 

a gap in p-continuous and p-median problems, 

considering the flow of products between the 

facilities led us to develop a second stage for 

the locating problem to compare the differences 

between the routing in p-median base located 

facilities and p-center base located facilities. 

Considering other new aspects of the problem 

makes this paper more applicable, especially 

when there is an emergency situation 

considering time windows. Facility disruption 

is another feature, which is possible in sites, so 
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when there is a nonstable situation and 

nominated locations are possible to be out of 

reach, the decision makers face with a multi-

aspect problem. To best of our knowledge this 

is the first paper that takes into account such 

features in p-median and p-center problems. A 

new particle swarm optimization method 

comprised of local and global search processes 

to deal with a capacitated location-routing 

problem (LRP) with stochastic demands 

proposed by [Marinakis, 2015]. A hybrid 

evolutionary algorithm to deal with the LRP 

considering time constraints developed by [Koç 

et al. 2016]. A multi-depot inventory-routing 

problem (IRP) to minimize the transportation 

and holding costs with a variable neighborhood 

search (VNS) algorithm along with a simulated 

annealing (SA) algorithm to avoid trapping in 

local optimum solutions solved by [Nikkhah 

Qamsari, Hosseini Motlagh, and Jokar, 2017]. 

Uncertainty is the feature that makes the model 

more compatible with the real situation. In this 

regard a fuzzy mathematical model to deal with 

the VRP with backhauls used by [Yalcın and 

Erginel, 2015]. One of the most important 

parameters from the manager’s point of view is 

the amount of demands. Since this parameter is 

an uncertain one, a two-echelon LRP with 

simultaneous pickup and delivery under fuzzy 

demands introduced by [Ghatreh Samani and 

Hosseini-Motlagh, 2017].  

Besides the demand, there are other important 

factors that can makes the model more realistic. 

Time windows are prevalent factors in a VRP 

with wide usage in different cases. However, 

this parameter increases the complexity of the 

VRP and needs to be solved by efficient 

approaches. A hybrid particle swarm 

optimization (PSO) with SA to use the benefits 

of them for the problem used by [Alinezhad et 

al. 2018]. This parameter can be considered as 

an uncertain parameter [Ghannadpour and 

Zarrabi, 2017; Issabakhsh et al., 2018]. As 

previously described, a fuzzy uncertainty is 

used to deal with non-determinative parameters 

(e.g., costumer demands). Thus, this approach 

is used in our research that has increased the 

complexity of the solution method.   

To overcome these shortcomings and fulfill 

these gaps, we develop a mathematical model 

for a continuous p-center and p-median (i.e., p-

centmedian) problem with capacity of open 

centers and a mathematical model for a multi 

depot capacitated vehicle routing problem to 

investigate the trade-off between the total cost 

of proposed models. Moreover, an efficient 

algorithm, called self-adaptive differential 

evolution algorithm is proposed to solve the 

developed mathematical model in a reasonable 

amount of time and obtain near-optimal 

solutions.  

In this paper, two types of continuous location 

problems are proposed. Our intention is to 

compare the difference between the total costs 

of both p-median and p-continuous problem in 

first step and compare the problems with 

vehicle routing in next step and demonstrate the 

results. Since the decision process of this 

problem is comprised of different aspects, we 

consider other management decision-making 

dimension to bring the problem closer to real 

case including the facility disruption 

probability, which is possible for various 

reasons (e.g., firefighting facility and 

earthquake). The basic questions of this study 

are as follows: 

 Which model is more compatible under 

facility disruption? 

 Which model is more economical? 

 Which model is more efficient when 

there is a time window for delivery? 

Because of extensive applications of a p-

median problem in delivery centers such as 

distribution companies and suppliers of raw 

materials and applications of p-center problems 

in emergency activities such as fire Stations and 

disaster relief location problems, it is necessary 

to extend this topic and add new feature like 

scheduling and facility disruption risk. Table 1 

depicts the summary of recent researches in this 

area. 
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Table 1. Overview of the literature on the p-median and p-center problems. 

Paper Objective Methodology 

Feature 

Capacity 

of vehicles 

Capacity of 

open 

locations 

Time 

window 

Reliability 

[Dantrakul et al., 2014] 
Minimization of setup cost 

and transportation cost 
Greedy algorithm ✓ _ 

  

[Kazakovtsev et al., 2015] Minimization of distance Greedy algorithm _ _   

[Nematian and Sadati, 

2015] 

Minimization of the 

maximum distance 

Possibility theory 

and fuzzy random 

chance-constrained 

programming 

_ ✓ 

  

[Irawan and Salhi, 2015; 

Nematian and Sadati, 

2015] 

Minimization of distance 
Variable 

neighborhood search 
_ ✓ 

  

[Colmenar et al., 2016] 
Minimization of the 

maximum distance 

Heuristic method –

based on the greedy 

random search 

_ _ 

  

[Maleki and Abbasi, 

2015] 

Minimization of the 

maximum distance 
Firefly method _ _ 

  

[Basappa et al., 2015] 
Minimization of the 

maximum distance 

Cole’s parametric 

search 
_ _ 

  

[Callaghan et al., 2017] Minimization of distance 

Reexamined and 

efficient 

neighborhood 

reductions 

✓ ✓ 

  

This paper 

Minimization of 

transportation, safety and 

disruption costs  

A self-adaptive 

evolutionary 

approach 
✓ ✓ ✓ 

 

✓ 

The main features of this paper are as follows: 

 Designing a novel integer linear 

mathematical model for a continuous p-

center problem. 

 Designing a novel integer linear 

mathematical model for a continuous p-

median problem. 

 Considering a capacity for the number 

of open facility for both p-center and p-

median problems. 

 Proposing a chance constrained method 

in order to increase the reliability of 

locations capacity limitation. 

 Formulation of safety factors based on 

the scale of natural disasters in the 

nominated places 

 Designing an integer linear 

mathematical model for a multi-depot 

VRP for the second stage and time 

windows for demands. 

 Developing an efficient new hybrid 

evolutionary algorithm to efficiently 

solve the large-sized instances in a 

reasonable amount of time. 

 Proposing a possibilistic programming 

approach based on the ME measure and 

fuzzy multi-objective programming 

approaches. 

 Parameters tuning by the Taguchi method 

for the self-adaptive evolutionary 

approach. 

 

2. Problem statement and 

methodology 
The mathematical model of a facility location 

problem is considered as a binary integer-

programming problem, based on [ Dantrakul, 

Likasiri and Pongvuthithum, 2014]. In this 

paper, the vehicles are considered unequal with 

a specific uniform speed range and variable 

usage cost, which are dependent to the vehicle 

type in distance. There is a possibility for 

unpredictable accidents in facilities based on 

the expert judgments. The following notations 

are presented to express the mathematical 
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model. Following, we propose a p-median and 

p-center problem as the first step of our 

research. 

I Set of clients (I= {1,…, n}) 

J, K 
Set of potential facility sites (J= 

{1,…, m}) 

𝑐𝑖𝑗 
Transportation cost from client i to 

facility j 

𝑉𝐶𝑖𝑗
𝑣  Mean variable cost of vehicles  

𝑡𝑖𝑗
𝑣  

1 if client i is assigned to facility j by 

vehicle v; and 0, otherwise 

I, J Node set of a complete graph 

𝑥𝑖𝑗 
1 if client i is assigned to facility j; 

and 0, otherwise 

𝑦𝑗 
1 if facility j is opened; and 0, 

otherwise 

P Number of active locations 

V Set of available vehicles 

𝑊𝑣 Capacity of each vehicle v 

𝑑̃𝑖 Demand of client i 

𝑡𝑖𝑚𝑒𝑗𝑘 
Mean travel time from node j to node 

k 

𝑈𝑖 
Upper bound of costumer time 

window 

𝐿𝑖 
lower bound of costumer time 

window 

𝑃𝑗 
Probability of disruption at facility 

cite 

𝐹𝑐𝑗 Estimated cost of rebuilding facility 

𝑠𝑝𝑒𝑒𝑑𝑗𝑘 
Mean speed of vehicle from node j to 

node k 

𝑐𝑎𝑝𝑖 Required capacity of costumer order 

𝑇𝑐𝑎𝑝𝑗 Total capacity of facility j 

𝑆𝐿𝐿𝑗 Safety level of location j 

𝑀𝑆𝐶𝑗 
Cost factor related to the safety of the 

selected location 

ROND Range of safety level 

𝑀𝑅𝑆𝐿 Minimum required safety level 

 

For achieving a reliabilie system a chance 

constraint method is taken into account as the 

facility exceedance probability which depicts 

the situation of allocation over the capacity of 

facility. Constraint (1) represents the 

exceedance probability. 

 

𝑃{∑𝑥𝑖𝑗𝑐𝑎𝑝𝑖  ≥ 𝑇𝑐𝑎𝑝𝑗} ≤  𝛾𝑗  

𝑖𝜖𝐼

 

(1) 

This equation can be reformulated based on 

cumulative distribution function as follows: 

 

𝐹𝑐𝑎𝑝𝑗(𝑥𝑖𝑗) ≤ 𝛾𝑗

 

(2) 

Since cumulative distribution functions are 

monotonic one to one, the reverse of Constraint 

(2) is proposed: 

 

𝑥𝑖𝑗 ≤ 𝐹𝑐𝑎𝑝𝑗(𝛾𝑗)
−1

 

(3) 

To deal with Constraint (3), capacity of 

facilities is considered to be uniform random 

variable. Upper and lower bounds of the 

capacity is determined based on facilities 

design, where 𝜃𝑖𝑗 is a fraction to set the 

minimum capacity of facilities. Finally, 

Equation (4) demonstrates the inverse 

cumulative distribution function of the 

capacity. 

 

𝐹𝑐𝑎𝑝𝑖(𝛾𝑖)
−1 = 𝜃𝑖𝑗𝐷𝑇𝑐𝑎𝑝𝑗

+ 𝛾𝑖𝐷𝑇𝑐𝑎𝑝𝑗(1 − 𝜃𝑖𝑗) 

 

(4) 

It is noticeable that 𝐷𝑇𝑐𝑎𝑝𝑗  determines the 

deterministic value of the facility capacity. As 

a result, the facility capacity reliability 

constraint is proposed by: 

  

𝑥𝑖𝑗 ≤ 𝐷𝑇𝑐𝑎𝑝𝑗[𝜃𝑖𝑗(1 − 𝛾𝑖) + 𝛾𝑖]

 

(5) 

 

The p-median problem is formulated as 

follows: 

Min∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑗𝜖𝐽𝑖𝜖𝐼  + 

∑ 𝑃𝑗𝐹𝑐𝑗𝑗𝜖𝐽 + ∑ 𝑀𝑆𝐶𝑗  
𝑆𝐿𝐿𝑖

𝑅𝑂𝑁𝐷𝑗𝜖𝐽 yj  
 (6) 

s.t.   

∑yj 
𝑗𝜖𝐽

≤  𝑃

 

 (7) 

∑𝑥𝑖𝑗 = 1

𝑗𝜖𝐽

 ∀𝑖 (8) 

𝑥𝑖𝑗 ≤ 𝐷𝑇𝑐𝑎𝑝𝑗[𝜃𝑖𝑗(1 − 𝛾𝑖) + 𝛾𝑖] ∀𝑖 (9) 

∑𝑆𝐿𝐿𝑗yj ≥ 𝑀𝑅𝑆𝐿

𝑗𝜖𝐽

  (10) 

𝑥𝑖𝑗 . yj 𝜖 {0,1}  (11) 

For the p-center problem, let Z be the maximum 

distance of facilities and costumers then the 

proposed model is formulated: 

Min 𝑧+ 

∑ 𝑃𝑗𝐹𝑐𝑗𝑗𝜖𝐽 +∑ 𝑀𝑆𝐶𝑗  
𝑆𝐿𝐿𝑗

𝑅𝑂𝑁𝐷𝑗𝜖𝐽 yj  
 (12) 

s.t.   
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∑yj 
𝑗𝜖𝐽

≤  𝑃

 

 (13) 

∑𝑥𝑖𝑗 = 1

𝑗𝜖𝐽

 ∀𝑖 (14) 

𝑥𝑖𝑗 ≤ 𝐷𝑇𝑐𝑎𝑝𝑗[𝜃𝑖𝑗(1 − 𝛾𝑖) + 𝛾𝑖] ∀𝑖 (15) 

∑𝑆𝐿𝐿𝑗yj ≥ 𝑀𝑅𝑆𝐿

𝑗𝜖𝐽

  (16) 

𝑥𝑖𝑗 . yj 𝜖 {0,1}  (17) 

For the second step, an uncertain constrained 

VRP is proposed below: 

Min  𝑍 = ∑ ∑𝑉𝐶𝑖𝑗
𝑣 𝑡𝑖𝑗

𝑣

 

𝑣∈𝐾(𝑖;𝑗)∈𝐴   

  (18) 

s.t.   

∑∑𝑑̃𝑖𝑋𝑖𝑗
𝑣

 

𝑗

 

𝑖

≤ 𝑊𝑣         

 

∀vϵV

 

(19) 

∑𝑋𝑖𝑗𝑣
 

𝑖;𝑗

=∑𝑋𝑗𝑖𝑣
 

𝑗;𝑖

 ∀vϵV (20) 

∑  ∑𝑋𝑖𝑗𝑣
 

𝑖

= 1     

  

𝑗

 ∀vϵV (21) 

∑X1jv = 1

 

j

 ∀vϵV (22) 

𝐿𝑖 ≤ 𝑡𝑖𝑚𝑒𝑗𝑘 ≤ 𝑈𝑖 ∀𝑖ϵI . j. kϵJ (23) 

𝑡𝑖𝑚𝑒𝑗𝑘𝑠𝑝𝑒𝑒𝑑𝑗𝑘 ≤ 𝑐𝑗𝑘𝑥𝑖𝑗yj  ∀𝑖ϵI . j. kϵJ (24) 

𝑜𝑖 − 𝑜𝑗 + (𝑀)𝑋𝑖𝑗
𝑣 ≤ 𝑀 − 1  (25) 

∀ 𝑖 ∈ 𝐼 {1} 𝑎𝑛𝑑  ∀𝑗 ≠ 𝑖  𝑎𝑛𝑑   ∀vϵV   

The objective function (6) is to minimize the 

total transportation cost, expected cost of 

facility disruption and safety cost of facility 

location. Constraint (7) determines the number 

of active centers and Constraint (8) ensures that 

each client is assigned to some facility. As 

mentioned before Constraint (9) considers 

facility capacity reliability constraint. 

Constraint (10) oblige the system to consider 

the minimum required amount of safety to 

select the location of facilities between the 

nominated zones based on the scale of the 

natural disasters that happened in the past    

constraint. Constraint (11) determines the type 

of variables. Objective function (12) minimizes 

the maximum transportation cost, expected cost 

of facility disruption and safety cost of facility 

location, Constraints (13) to (17) are as same as 

Constraint (7) to (10). Objective function (18) 

minimizes the transportation cost of vehicles. 

Constraint (19) is about the capacity of each 

vehicle. Constraint (20) is added in order to 

establish the balance between centers met by 

vehicles. Constraint (21) force vehicles to meet 

all the demands. Constraint (22) makes sure 

that every vehicle starts from depot. Constraint 

(23) and Constraint (24) enforce the time 

window restrictions. Constraint (25) removes 

the sub-tours. Figure 1 demonstrates an 

overview of the process. 

 
Figure 1. Overview of the process 

3. Solution Procedure 

In Section 2, we propose a two-step linear 

programing, while in this part we introduce the 

procedures used to solve the models. The 

proposed model is an uncertain single-objective 

two-step linear programming one. In the first, 

the uncertain model is converted to its 

equivalent crisp one, and then in the second 

step, the crisp model is solved using the 

developed evolutionary algorithm. Since the 

core of every meta-heuristic approach is the 

relation between the feasible solution, objective 

function and process of comparing the other 

solutions in a specific algorithm, in the 

beginning the solution representation is 

described for each step. 

3.1 Solution representation 

To produce different solutions in a continuous 

space different combination of random 

locations are chosen in specific continuous 

space, and a random function determines the 

order of assigned centers to depots which is 

shown in Table 2. Also, in the second step, 

another random function determines the 

First 
step

Finding the best 
location for centers

Second 
step

Assining the group 
of depots and 
centers to a 
predetermined 
number of vehicles
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assigned locations and depots to a vehicle to 

find the best objective function is depicted in 

Table 3. 

Table 2. Ordination of the depots assignment 

1 2 4 7 9 6 3 5 8 

 

Table 3. Ordination of the vehicles assignment 

1 2 10 4 7 9 6 8 5 3 11 

3.2 Equivalent auxiliary crisp model 

The expected value and chance-constraint 

programming approach popular methods to 

capture the uncertainty in the parameters of 

model [ Mousazadeh, Torabi and Pishvaee, 

2014]. Usually the decision maker’s behavior is 

divided into optimistic and pessimistic, which 

are the basic measures of fuzzy approaches. 

However, a flexible method, which can 

consider both decisions simultaneously 

developed by [Xu and Zhou, 2013]. According 

to [Xu and Zhou, 2013], the fuzzy measure Me 

is defined as follows: 

𝑀𝑒{𝐴} = 𝑁𝑒𝑐{𝐴} + 𝜆(𝑃𝑜𝑠{𝐴} − 𝑁𝑒𝑐{𝐴})

 

(13) 

where (𝜃. 𝑃(𝜃). 𝑃𝑜𝑠) is the possibility space 

and A is a set in 𝑃(𝜃). Moreover, 𝜆 is the 

optimistic-pessimistic parameter. 

the expected value operator based on the Me 

method is demarcated by [Xu and Zhou, 2013]: 

𝐸[𝜉] =
(1 − 𝜀)

2
𝜉1 +

1

2
𝜉2 +

𝜀

2
𝜉3

 

(14) 

where 𝜉 = (𝜉1. 𝜉2. 𝜉3) is a triangular fuzzy 

variable.  

In order to deal with the uncertain parameters 

of the model, the chance-constrained 

programming approach is used which is 

described below: 

Min 𝑐̃𝑥 

(14) 

s.t. 

𝑀𝑒{𝐴̃𝑥 ≥ 𝑏̃} ≥  𝛼 

𝑀𝑒{𝑁̃𝑥 ≤ 𝑑̃} ≥  𝛽 

𝑥 ≥ 0 

where 𝑐̃ = (𝑐̃1. 𝑐̃2. … . 𝑐̃𝑛).  𝐴̃ = [𝑎̃𝑖𝑗]𝑚×𝑛.  𝑁̃ =

[𝑛̃𝑖𝑗]𝑚×𝑛. 𝑏̃ = (𝑏̃1. 𝑏̃1. … . 𝑏̃𝑛)
𝑡
and 

𝑑̃ = (𝑑̃1. 𝑑̃1. … . 𝑑̃𝑛)
𝑡
show the triangular fuzzy 

numbers include in the objective function and 

constraints. According to [Xu and Zhou, 2013], 

the mentioned model can be divided to 

approximation models, namely the lower 

approximation model (LAM) and upper 

approximation model (UAM) presented by: 

(𝑈𝐴𝑀)

{
 
 

 
 
Min  𝐸[𝑐̃]𝑥                        
𝑠. 𝑡                                      
𝑃𝑜𝑠{𝐴̃𝑥 ≥ 𝑏̃} ≥ 𝛼 

𝑃𝑜𝑠{𝑁̃𝑥 ≤ 𝑑̃} ≥ 𝛽

𝑥 ≥ 0                         

(16) 

(𝐿𝐴𝑀)

{
 
 

 
 
Min  𝐸[𝑐̃]𝑥                          
𝑠. 𝑡                                        
𝑁𝑒𝑐{𝐴̃𝑥 ≥ 𝑏̃} ≥ 𝛼

𝑁𝑒𝑐{𝑁̃𝑥 ≤ 𝑑̃} ≥ 𝛽

𝑥 ≥ 0                         

(17) 

The above models can be changed into a 

definite equivalent model as Eq. (18) and (19).

(𝑈𝐴𝑀)

{
  
 

  
 Min (

1 − 𝜆

2
𝐶(1) +

1

2
𝐶(2) +

𝜆

2
𝐶(3)) 𝑥                                                                 

𝑠. 𝑡                                                                                                                     
  𝐴(2)𝑥 + (1 − 𝑎)(𝐴(3) − 𝐴(2))𝑥 ≥ 𝑏(2) − (1 − 𝑎)(𝑏(2) − 𝑏(1)) 

   𝑁(2)𝑥 − (1 − 𝛽)(𝑁(2) −𝑁(1))𝑥 ≤ 𝑑(2) + (1 − 𝛽)(𝑑(3) − 𝑑(2)) 

𝑥 ≥ 0                                                                                                       

 (18) 

(𝐿𝐴𝑀)

{
  
 

  
 Min (

1 − 𝜆

2
𝐶(1) +

1

2
𝐶(2) +

𝜆

2
𝐶(3)) 𝑥                                                                 

𝑠. 𝑡                                                                                                                     
𝐴(2)𝑥 − 𝑎(𝐴(2) − 𝐴(1))𝑥 ≥ 𝑏(2) + (1 − 𝑎)(𝑏(3) − 𝑏(2))         

𝑁(2)𝑥 + (1 − 𝛽)(𝑁(3) − 𝑁(2))𝑥 ≤ 𝑑(2) − 𝛽(𝑑(2) − 𝑑(1))       

𝑥 ≥ 0                                                                                                     

 (19) 
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According to the above explanations, our model 

is presented for the second step of the model 

with uncertain demands as follows: 

Min 𝑍 = ∑ ∑𝑐𝑖𝑗𝑋𝑖𝑗
𝑣

 

𝑣∈𝐾(𝑖;𝑗)∈𝐴   

  (20) 

s.t.   

∑ ([𝑑𝑖(2) − (1 − 𝛼)(𝑑𝑖(2) −𝑖
𝑖≠𝑘

𝑑𝑖(1))])𝑋𝑖𝑘 ≤ 𝑊𝑣

  

∀vϵV

 

(21) 

∑𝑋𝑖𝑗𝑣 

 

𝑖;𝑗

=∑𝑋𝑗𝑖𝑣     

 

𝑗;𝑖

 ∀vϵV (22) 

∑  ∑𝑋𝑖𝑗𝑣
 

𝑖

= 1     

  

𝑣

 ∀vϵV (23) 

∑X1jv = 1

 

j

 ∀vϵV (24) 

𝑜𝑖 − 𝑜𝑗 + (𝑀)𝑋𝑖𝑗
𝑣 ≤ 𝑀 − 1  (25) 

LAM: 

Min 𝑍 = ∑ ∑𝑐𝑖𝑗𝑋𝑖𝑗
𝑣

 

𝑣∈𝐾(𝑖;𝑗)∈𝐴   

  (26) 

s.t.   

∑ ([𝑑𝑖(2) − (1 − 𝛼)(𝑑𝑖(3) −𝑖
𝑖≠𝑘

𝑑𝑖(2))])𝑋𝑖𝑘 ≤ 𝑊𝑣         

  

∀vϵV

 

(27) 

∑𝑋𝑖𝑗𝑣 

 

𝑖;𝑗

=∑𝑋𝑗𝑖𝑣     

 

𝑗;𝑖

 ∀vϵV (28) 

∑  ∑𝑋𝑖𝑗𝑣
 

𝑖

= 1     

  

𝑣

 ∀vϵV (29) 

∑X1jv = 1

 

j

 ∀vϵV (30) 

𝑜𝑖 − 𝑜𝑗 + (𝑀)𝑋𝑖𝑗
𝑣 ≤ 𝑀 − 1  (31) 

3.3 Developed evolutionary algorithm 

In the literature, it is proved that p-median and 

p-center problems are NP-hard, furthermore to 

deal with such a problem developed 

evolutionary algorithm is applied .Differential 

evolution (DE) introduced by [Storn and Price, 

1997]. This algorithm is belonged to the class 

of evolutionary algorithms(EA). Similar to 

other EAs, DE is dependent to primary 

population. In each generation, a mutation 

operator is employed to generate a new solution 

vector as shown by: 

 

𝑀𝑉𝑖 = 𝜔𝑣1 + 𝐹(𝜔𝑣2 − 𝜔𝑣3)  (32) 

where 𝑀𝑉𝑖 is a mutant vector and 𝜔𝑣1. 𝜔𝑣2. 𝜔𝑣3  

are different arbitrary vectors nominated from 

(𝑖 = 1 . . . . 𝑁𝑝𝑜𝑝) and they are not equal to i. F 

is the amplification coefficient (i.e.و 𝐹 ∈

[0. 2]). 

A Binomial crossover is the other function to 

increase the diversity of solutions. By using the 

binomial crossover operator, we can obtain a 

combined vector with some common 

information achieved by sharing the data of 

mutated vector and another predetermined 

(target) vector to create trial vector 𝜇𝑖 =
{𝜇𝑖1 . . .  𝜇𝑖𝑘 . . .  𝜇𝑖𝑛} as shown below. 

𝜇𝑖𝑘 = {
𝑀𝑉𝑖𝑘  𝑖𝑓 𝑟𝑎𝑛𝑑(𝑘) ≤ 𝐶𝑅 𝑎𝑛𝑑 𝑘 = 𝑟𝑛𝑏𝑟(𝑖)

𝜔𝑖𝑘  𝑖𝑓 𝑟𝑎𝑛𝑑(𝑘) > 𝐶𝑅 𝑎𝑛𝑑 𝑘 ≠ 𝑟𝑛𝑏𝑟(𝑖)
 

(33) 

where rand(k) is the k-th element of an N-

dimensional uniform random number ∈ [0. 1], 
CR linked to the crossover rate and rnbr(i) is an 

arbitrarily chosen index ∈ {1 . . . 𝑁}, which 

guarantees that the new solution vector gets at 

least one of the dimensional values of mutated 

vector. Lastly, the new solution with better 

results will be replaced with old one. Table 4 

shows the Pseudo code of the DE algorithm. 

 

Table 4. Pseudo code of the DE algorithm 

Set the parameters  

Generate preliminary population 

Calculate objective function of each solution 

While termination state is not satisfied continue 

a. Choose parents  

b. Apply mutation 

c. Apply Crossover  

d. Compute the objective functions of new solutions 

            If  TCnew vector < TCtarget vector then 

Replace the old vector with new one  

            End if 

End while 

 

According to [Zhalechian, Tavakkoli-

Moghaddam and Rahimi, 2017], a new DE 

algorithm, named self-adaptive DE (SADE), is 

proposed to increase performance. In the 

proposed SADE algorithm, different types of 

mutations and crossover are utilized. In first 

phase, different types of mutation and crossover 
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apply on the initial population, in main phase, 

the SADE algorithm explores in solution area 

using the self-adopted mutation and crossover 

operators. Table 5 depicts the different types of 

mutation (based on [Zhalechian, Tavakkoli-

Moghaddam and Rahimi, 2017]). 

 

Table 5. Different mutation strategies 
Mutation 

strategy 
Operator 

Rand/1 𝑀𝑉𝑖 = 𝜔𝑣1 + 𝐹(𝜔𝑣2 −𝜔𝑣3) 

Best/1 𝑀𝑉𝑖 = 𝜔𝑏𝑒𝑠𝑡 + 𝐹(𝜔𝑣1 − 𝜔𝑣2) 

Current 

to best/1 

𝑀𝑉𝑖 = 𝜔𝑣1 + 𝐹(𝜔𝑏𝑒𝑠𝑡 − 𝜔𝑖)

+ 𝐹(𝜔𝑣1 − 𝜔𝑣2) 

Best/2 
𝑀𝑉𝑖 = 𝜔𝑏𝑒𝑠𝑡 + 𝐹(𝜔𝑣1 − 𝜔𝑣2)

+ 𝐹(𝜔𝑣3 − 𝜔𝑣4) 

Rand/2 
𝑀𝑉𝑖 = 𝜔𝑣1 + 𝐹(𝜔𝑣2 −𝜔𝑣3)

+ 𝐹(𝜔𝑣4 − 𝜔𝑣5) 

3.4 Simulated annealing algorithm 

To assess the SADE algorithm in large-sized 

problems, an improved simulated annealing 

(SA) algorithm is proposed based on 

[Mahmudy, 2016], which is used to deal with a 

time window VRP problem and has similarities 

with this model. The SA algorithm is created 

based on the physical process of annealing for 

a specific metal. This algorithm starts with an 

initial temperature and searches different 

neighbor solution in each loop. This algorithm 

replaces other neighbor solutions with the 

current solution by a specific probability. This 

probability decreases as the algorithm 

continuous. Table 6 shows the pseudo code of 

the SA algorithm. 

After some experiments and based on 

[Mahmudy, 2016], the main parameters of the 

SA algorithm are set as follows: 

1. Initial temperature is 0.9 

2. The cooling rate of temperature is 0.9 

3. The final temperature is 0.01 

4. Number of iteration for each 

temperature is 5000  

 

 

 

 

 

Table 6. Pseudo code of the SA algorithm 

Set the initial temperature  

Generate the initial solutions 

Calculate the objective function of solution 

While 𝑇 ≥ 𝑇𝑒𝑚𝑝1 

a. Generate neighbor solutions for each iteration 

b. Calculate the objective function of solutions 

            If  Znew sol ≤ Zcurrent sol then 

Replace the old solution with new one  

            Else if  Znew sol > Zcurrent sol 

Accept the change with this probability 

Prob =  𝑒
−(
(Znew sol−Zcurrent sol)𝑘

Zcurrent sol
)
  

Else do nothing 

End if 

Update temperature  

End while 

3.5 Taguchi method 

 One approach of factorial design of 

experiments is the Taguchi method (TM), 

which aims to improve the quality of 

manufacturing processes. A full factorial 

experiment is an experiment whose design 

includes two or more factors, each of factors are 

comprised of discrete uncertain values or 

‘levels’, and all the possible mixtures of these 

levels should be investigated in every 

experimental units; i.e., such an experiment will 

consider all possible combinations for a given 

set of factors [Azadeh et al., 2017]. In order to 

decrease the number of experiments, a good 

combination of parameters to run the SADE 

Taguchi’s signal-to-noise (S/N) method is used. 

Figure. 2 shows the related results. Table 7 

shows the levels of SA factors and the results of 

the Taguchi method are shown by: 

Table 7. Design factors and their levels 

 Levels 

Parameters 1 2 3 

Maximum iteration 100 350 500 

Population size 50 80 100 

Crossover rate 0.3 0.6 0.8 

F 0.6 0.4 0.2 



A Fuzzy Two-Stage Capacitated Continuous P-Cent median Vehicle Routing Problem:..  

International Journal of Transportation Engineering,  226   

Vol.7/ No.2/ (26) Autumn 2019 

 
Figure 2. Taguchi’s signal-to-noise (S/N) 

 

4. Computational results 
To compare the results of two different 

problems, different test problems have been 

generated. To validate the results of the 

proposed algorithm the presented model is 

coded in GAMS 24.7 and compared with the 

results of SADE in MATLAB R2014b in small-

sized problems. Also, the genetic algorithm 

(GA) and simulated annealing (SA) results are 

illustrated to prove the performance of SADE, 

10 test problems are generated in small sizes 

and compared with GAMS while 10 test 

problems are generated in large sizes. Notably, 

all the calculations were performed on a laptop 

with 2.66 GHz CPU and 6 GB RAM. 

Information of mathematical model to deal with 

different created test problems are shown in 

Table 8. To rich the near optimum solution we 

have set the parameters of GA and SADE based 

on Taguchi as mentioned before. In order to 

assess the   p-median and p-center results in 

small sizes, their results are compared with an 

exact method (results of GAMS) and the 

outcomes are summarized by using gap as 

formulated here [100 × (GOpt − GAlg) GAlg⁄ ]. 

Table 9 shows the final appropriate parameters 

tuned to run the SADE and GA algorithm. 

Tables 10 and Tables 11 demonstrate the results 

of first step, this result are related to p-median 

and p-center problem respectively which 

validates the performance of metaheuristics in 

comparison with GAMS results. Table 12 

shows the results of large-sized test problems 

for p-median and p-center location problem and 

the gap is calculated based on [100 ×
(SSADE − SGA) SGA⁄ ]. Figure 3 shows the 

results of specific size p-center location 

problem between the costumers, coded in 

MATLAB. Table 13 shows the results of the 

vehicle routing problem between the costumers 

and facilities as the second step of problem in 

different test problem sizes. Table 14 and Table 

15 show the same results of two last mentioned 

tables considering the point that the algorithm 

SA is replaced with GA and gap shows 

[100 × (SSADE − SSA) SSA⁄ ]. 
 

Table 8. Parameters of the model 

Parameters Values 

𝐶𝑖𝑗 ~𝑈(10.50) 

𝑃 ~𝑈(5.50) 

𝑑𝑖 ~𝑈(10.20) 

𝑊𝑣 ~𝑈(50.75) 

M 100000000 

Table 9. Parameters of the GA and SADE  

Algorithm Parameter Value 

SADE Population 

size 

100 

Crossover rate 0.3 

F 0.8 

Iteration 500 

GA Population 

size 

20 

Crossover rate 0.3 

Mutation rate 0.6 

Iteration 500 

 

Table 10. Computational results of a continuous 

p-median problem 

Data 

set 
I J 

SADE GA SA 

Gap 

(%) 

Time 

(Sec.) 

Gap 

(%) 

Time 

(Sec.) 

Gap 

(%) 

Time 

(Sec.) 

1 4 2 0 5 0 3 0 2 

2 6 2 0 5 0 5 0 4.5 

3 8 3 0 5 0 5.1 1 5 

4 9 4 0 5 0 6 1.5 5.12 

5 10 5 1 6 1.01 7.8 2 6.5 

6 12 5 1 6 1.097 8.6 2.45 7.1 

7 14 5 1.01 8 1.18 12 2.7 10 

8 16 5 1.1 15 1.2 17 3.1 13 

9 18 5 1.34 18 1.6 22 3.5 16 

10 40 20 1.9 23 2.3 31 4 21 
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Table 6. Computational results of a continuous 

p-center problem 

Data 

set 
I J 

SADE GA SA 

Gap 

(%) 

Time 

(Sec.) 

Gap 

(%) 

Time 

(Sec.) 

Gap 

(%) 

Time 

(Sec.) 

1 4 2 0 5 0 2.7 0 2 

2 6 2 0 5 0 5 0 4 

3 8 3 0 5 0 6.2 0.9 5 

4 9 4 0 5 0 7.2 1.2 5 

5 10 5 1 6 1.04 8.3 1.9 6 

6 12 5 1 6 1.98 9.5 3 6 

7 14 5 1.02 8 1.1 12 3.5 7.1 

8 16 5 1.11 15 1.3 17 3.8 12.4 

9 18 5 1.7 18 1.95 20 4.5 15 

10 40 20 1.9 27.4 2.04 29 5 24 

 

 
Figure 3. Results of the second step for a p-

continues in a continuous mode 

5. Sensitivity Analysis 
In this section cost value of both p-center and 

p-median problems along with vehicle routing 

problem in a specific size (I=50, J=10, V=10) 

are compared in different size of test problems. 

and the results are illustrated in Figure 4 and 

Figure5. 

Moreover, the difference between the results of 

p-center and p-median problems caused by 

changing the capacity of vehicles and run time 

of the proposed algorithm are compared for 

both the p-center and p-median problems in 

Figure 6. Figure 7 and Figure 8 shows the 

process time of SADE, GA and SA algorithms, 

based on the results SA algorithm takes less 

time rather than other algorithms. 

The fluctuations of the total objective function 

(summation of location and routing problem) 

are demonstrated in Figure 9, which look into 

the variations of results caused by changes in 

the important factor of this formula as the 

objective functions used in the algorithm to 

achieve the optimum answer: 

 Total z = (eta) (p-median z) + (1 - eta) (p-center 

z)  

In those figures, the number of vehicles is 

assumed to be 5, also the number of I and J are 

based on the mentioned data in Table 12.  To 

sum up the results show the superiority of 

SADE algorithm to reach near optimum 

answers in large size test problems however, 

SA algorithm takes less time between the 

mentioned algorithms. 

 

 

 

 

 

Table 7. Computational results of the continuous p-center and p-median problems 

Data set I J 
p-median 

time SADE 

p-center 

time SADE 

p-median 

time GA 

p-center 

time GA 

p-center 

GAP (%) 

p-median 

GAP (%) 

11 45 20 77 73 92 87 3 4 

12 45 30 80 77 114 123 3.5 5.5 

13 50 20 88 90 129 134 5 6.1 

14 60 25 119 123 156 150 7 8 

15 60 45 138 143 189 209 8 7.7 

16 100 30 186 181 223 228 5.6 8.1 

17 100 40 209 190 245 256 7.1 9 

18 150 40 261 258 290 294 6.9 7.8 

19 200 50 316 320 350 365 8 6 

20 200 100 391 404 443 459 10 12 
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Table 8. Computational results of the continuous p-center and p-median routing problems 

Data 

set 
(I, J) V 

P-median routing 

time (SADE,GA) 

p-center routing 

time (SADE,GA) 

p-center GAP 

(SADE,GA)% 

p-median GAP 

(SADE,GA)% 

1 (10,5) 3 (7.5,8) (8.1,12) (0,0) (0,0) 

2 (20,10) 5 (11,14) (13.5,19) (0.9,1) (1,1) 

3 (20,15) 10 (20,25) (22,27) (1.5,2) (1.4,2.1) 

4 (30,10) 10 (30.4,37) (31,41) 2.4 2.33 

5 (40,10) 15 (38,42) (40.1,48) 3.3 3.9 

6 (50,20) 20 (50,55) (52,60.3) 4.7 4.5 

7 (100,40) 30 (103,113.1) (110,120) 5.6 5.7 

8 (150,40) 40 (123,128) (128,136) 10.09 10.11 

9 (200,50) 50 (173,180.3) (180,194) 14.2 16 

10 (200,100) 50 (184,197) (190,205) 18 21 

Table 9. Computational results of the continuous p-center and p-median problems 

Data set I J 
p-median 

time SADE 

p-center 

time SADE 

p-median 

time SA 

p-center 

time SA 

p-center 

GAP (%) 

p-median 

GAP (%) 

11 45 20 77 73 60 58 5 4.6 

12 45 30 80 77 65 66.5 6.1 7 

13 50 20 88 90 76 75 7.6 9 

14 60 25 119 123 100 114 9 10.1 

15 60 45 138 143 113 123 10.1 11 

16 100 30 186 181 140 134 11 12.3 

17 100 40 209 190 169 154 13 14.2 

18 150 40 261 258 198 187 14.5 13 

19 200 50 316 320 247 223 17 18.7 

20 200 100 391 404 304 293 20 23 

 

Table 10. Computational results of the continuous p-center and p-median routing problems 

Data 

set 
(I, J) V 

P-median routing 

time (SADE, SA) 

p-center routing 

time (SADE, SA) 

p-center GAP 

(SADE, SA) % 

p-median GAP 

(SADE, SA) % 

1 (10,5) 3 (7.5,3) (8.1,4.1) (0,0) (0,0) 

2 (20,10) 5 (11,7) (13.5,5) (0.9,2) (1,3) 

3 (20,15) 10 (20,17) (22,11) (1.5,5) (1.4,4.1) 

4 (30,10) 10 (30.4,23) (31,22) 5 7 

5 (40,10) 15 (38,31) (40.1,27) 8.1 9 

6 (50,20) 20 (50,42) (52,36) 12 11 

7 (100,40) 30 (103,88) (110,74) 13.2 14 

8 (150,40) 40 (123,91) (128,100.5) 17 20 

9 (200,50) 50 (173,137) (180,123) 19.5 22 

10 (200,100) 50 (184,150) (190,141) 21 25 
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Figure 4. Objective function of the p-median 

location-routing problem 

 

 
Figure 5. Objective function of a p-center 

location-routing problem 

 

 
Figure 6. Objective function fluctuations due to 

changes in capacity of the vehicles 

 

 
Figure 7. Run time comparisons of p-center 

problem for the proposed algorithms 

 

 
Figure 8. Run time comparisons of the p-median 

problem for the proposed algorithms 

 

It is obvious that the p-median problem is 

more volatile rather than the p-center 

problem. 

 

 

Figure 9. Total objective function comparison 

with variation of the eta  

 

 

6. Conclusion 
In this paper, a fuzzy two-stage integer 

programing introduced to compare the 

differences between the p-center and p-median 

location problem in a continuous space by 

considering facility disruption and in second 

step the achieved results utilized for time-

window multi-depot capacitated vehicle 

routing problem. To cope with uncertain 

parameters, an efficient possibilistic 

programming approach based on Me measure 

was applied. Since the problem was NP-hard in 

both stages a self-adaptive evolutionary 

approach applied to deal with the problem. 

Furthermore, some numerical experiments and 

sensitivity analyses were shown to validate the 

presented model. Moreover, the performance of 
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the proposed self-adaptive differential 

evolution algorithm was improved by Taguchi 

method where the results showed that 

developed self-adaptive differential evolution 

algorithm out performs rather than genetic 

algorithm and simulated annealing algorithm. 

According to the results, the p-median problem 

shows to be more volatile under variation of 

vehicle capacity while the p-center problem 

costs more. Some extensions in this paper can 

be about developing the model (for example 

considering financial constraint and scheduling 

of vehicles) and designing exact algorithms to 

solve the model. 
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