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Abstract

There is a growing recognition that discrete choice models are capable of providing a more realistic picture of route
choice behavior. In particular, influential factors other than travel time that are found to affect the choice of route
trigger the application of random utility models in the route choice literature.

This paper focuses on path-based, logit-type stochastic route choice models, in which several forms of logit-family
models have been calibrated using practical data and examined on an illustrative network. For each type of the logit-
family models, two modeling approaches have been implemented in stochastic traffic assignment (STA). The first
approach is a univariate route choice model. Challenges in the estimation of path utility are discussed and a heuristic
estimation algorithm for univariate models is proposed. As the proposed approximate calibration method does not
require resorting to choice data, it can be regarded as a more practical method than the traditional approach and can
overcome many inherent difficulties in calibration of route choice models in univariate case. The second one includes
a multi-criteria path utility function considering travel time and monetary cost along with travelers’ income to deter-
mine the equilibrium network flow. This model has been calibrated based on a stated preferences data set.

This study showed that estimation of the utility could have remarkable impacts on the equilibrium flow and thereby
on policy assessments, while the impact of model specification is far less severe. The importance of this achievement
arises from the fact that most of the efforts made in stochastic assignment literature have been dedicated to apply theo-
retically appealing choice models, and model calibration by comparison, have not received considerable attention.
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1. Introduction

In the conventional four-step transportation planning,
traffic assignment is the last step in which the equilibrium
traffic flow is determined in a network, given the travel
demand matrix and the network characteristics. Traffic
assignment is a fundamental part of quantifying network
performance and directly affects policy assessment
outcomes. Travel time is the only determinant in the
conventional route choice models, while there are other
factors affecting route choice, such as out-of-pocket
cost and even demographics of travelers [Dial, 2000].
Having a handful number of socio-economic variables
for each traveler in the emerging activity-based
models, behavioral and realistic route choice models
are becoming even more acknowledged in the network
policy assessments.

Deterministic traffic assignment is the state
of the practice and has been established based on the
Wardrop’s user equilibrium (UE) criterion, stating
that “the journey times in all routes actually used are
equal and less than those which would be experienced
by a single vehicle on any unused route” [Wardrop,
1952]. Route choice procedure is a critical inner
problem in traffic assignment models, as it contains
the assumptions of the analyst about user’s behavior.
In deterministic UE (DUE), for example, this inner
problem s an all-or-nothing assignment which allocates
all trips to quickest paths. However, it is argued that
DUE is not behaviorally flexible and realistic, since
it utilizes some implicit restrictive assumptions. DUE
assumes, for instance, that (I) all the trip makers have a
perfect knowledge about the network; (II) they follow
a similar and consistent choice procedure; and (III) all
the passengers are perfect optimizers. Stochastic traffic
assignment (STA) models, on the other hand, have been
developed to relax these assumptions to some extent.
Daganzo and Sheffi [1977] introduced the concept of
perceived travel time, and thereby defining stochastic
user equilibrium (SUE) stating that “in a SUE network,
no user believes he can improve his travel time by
unilaterally changing routes”.

Random utility models are applied in SUE to
account for the randomness in route choice decisions.
Logit-family models are commonly used, as they have
a closed form formula for the route choice probability
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that ease the estimation and interpretation of the
results. SUE models, however, are predominantly
applied having travel time as the only determinant of
path utilities, although there is no theoretical limitation
on the number of explanatory variables in random
utility modeling. Moreover, according to the literature,
parameters of path utility functions are generally
specified in a predetermined basis and were typically
set to rounded numbers such as the unity rather than
being estimated based on the observed data [Chen et
al. 2003; Prashker and Bekhor, 1998], whereas the
parameters convey important behavioral information
and their value affect the predicted traffic flow.
Motivated by the above discussion, this study is to
estimate and apply a single-criteria as well as a multi-
criteria path utility function containing travel time
and costs divided by income, both calibrated based
on experimental data. The behavioral parameter in all
the univariate logit-family models of SUE known as
the dispersion parameter that is the only behavioral
parameter directly related to trip maker’s perception
is calibrated using a heuristic method proposed in this
study. This parameter is the coefficient of travel time
in the path utility function. Changing the interpretation
of this parameter to an equivalent standpoint, a
heuristic algorithm for estimation of this parameter is
introduced that can be applied in the univariate path
utility situation. Performance of the calibrated models
is compared with different types of logit-family route
choice models in the pedagogical network of Nguyen
and Dupuis [1984].

It is also worth mentioning that the different choice
models applied in this study have all been previously
developed in the literature, however to the best of
our knowledge, no comprehensive comparison has
been made formerly on the difference of the result
of application of these models in a unified study.
Moreover, most of the previous efforts have been
dedicated to development of the more advanced choice
models. This study, however, was aimed to consider
both application and estimation phases equally, as
it has been shown in this study that the estimation is
not only a subordinate issue in network analysis but
also can much more affect the prediction result than
specification of the model. Further, the proposed
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approximate method of calibration for univariate
models is originally introduced in this study for the first
time with the aim of alleviating the intrinsic challenges
in calibration of SUE models. Finally, application of
different logit-family models in a multi-criteria basis,
while including demographic aspects of travelers to TA
phase, is considered in this study for the first time.
The remaining parts of the paper are organized as
follows. In section 2, the theoretical background
for different types of logit-family STA models are
provided. The examined models include a broad
range of models introduced in the literature, from the
simplest multinomial logit and its modifications to the
state-of-the-art generalized extreme value models. In
section 3, the data sets and data collection methods
are explained. Two types of data have been collected
for this study, one for univariate models and the other
for multi-criteria models. The heuristic approach for
calibration of univariate SUE models, as well as the
results of estimations (for both univariate and Multi-
criteria models) are elaborated in this section. Section
4 is dedicated to examining the results of applying
the estimated SUE models to an illustrative network.
The equilibrium algorithm, adapted and applied to
this study, is introduced in this section. Furthermore,
a comparison on the influence of calibration and
specification of the choice model on prediction of flow
is made, the effect of congestion on similarity of UE
and SUE flows previously studied by Sheffi and Powell
[1981] are reconsidered and the potential capability
of the proposed multi-criteria model in assessment of
monetary transportation supply management policies,
such as road or fuel pricing, are illustrated. Section 5
concludes the study and summarizes the findings. Some
directions for future researches are also put forward in
this section.

2. Theoretical Background
Consider trip-maker n facing F paths in the set of

K for traveling from zone r to s. The utility that n
perceives from path k is denoted by U_ in Eq. 1,
and is decomposed into a deterministic (V, ), and a
random component (¢, ). The latter encompasses all the
unobserved factors, and highly influences the structure
and properties of the route choice model.
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U=V, +e&, ¥n=1..N; Vk € K(1)
N is the total number of trip makers between origin r
and destination s. Superscript rs is omitted for the sake
of ease of reference. V , is a function of explanatory
variables that is typically specified as
models, where t, denotes the travel t[nénfr;f path k. Ois
termed the “dispersion parameter”.

According to the random utility theory postulation,
each traveler chooses the path that he believes is
the most desirable. Therefore, the probability of
taking path k, by traveler n is defined in Eq. 2.
Denoting the vector of error terms for person n as

in univariate

£, =&y, 85,1 s S50 , @nd the joint probability

density function of &£, as f(&,) , P can be restated
as in Eq. 3, in which I is an indicator function which is
equal to 1 when the event in the parenthesis occurs and
is zero otherwise [Train, 2009].

Py =Prob(Uy, > U, ;Vj+ k) = 2)

Prob(Vy, + s = Vo, + 2,55V # k)

= Prab[sn}- — Vi iV # k)

Epp = Vnk — ¥nmj

Pnk =j I(Snj — En = Vnk - Vn}'rvj # k) f{snj dsn (3)

n

For logit-family models, f is specified such that the
above integral can analytically be solved and stated as a
closed form. Tractability of the estimated probabilities
makes this class of models the most widely used in the
choice modeling context. -

According to the literature, there is a broad range
of logit-type models developed and applied in the
literature of transportation networks modeling. Figure
1 provides a general overview of these models that their
theoretical frameworks are outlined in the following
subsections.

2.1. Multinomial Logit (MNL)

MNL model is derived by assuming independently
and identically extreme value distribution for the
error terms. This results in a diagonal homoskedastic
covariance matrix of the errors, and the following
choice probability:
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(4)
P, =
g E;‘E:{ev

I

The well-known Dial’s algorithm [Dial, 1971], also
called STOCH, loads network according to the above
equation without a need to generate paths explicitly.
This link-based algorithm also reduces the set of all
paths to a subset of paths as choice set of travelers.

Paths attribute and, as a result, their systematic utilities
are flow-dependent and vary due to congestion effects.
Therefore, it must be determined simultaneously with
path choice probabilities, which indicates the concept
of equilibrium. Multinomial Logit-based SUE was
first formulated by Fisk [Fisk, 1980] as a convex
optimization problem. Evaluation of the objective
function and its derivatives is more difficult than DUE,
as path flows enter the objective function as decision
variables. Therefore, SUE flows are usually obtained by
the Method of Successive Averages (MSA), a convex
combinations method with predetermined sequences
of step sizes. Powell and Sheffi (1982) discussed the
conditions under which MSA converges, and showed

that these conditions are satisfied in logit-based SUE,
when path-sets are considered as fixed sets. There are
also heuristic methods which optimizes step sizes for
solving Fisk’s formulation [Chen and Alfa, 1991]. The
equivalent mathematical formulation of MNL-SUE,
formulated by Fisk (1980), in the notation of single-
criterion case is as follows:

MIN Z=ZJ:nra(co]dw+%z Z G (5)

rs KEH

Subject to fif=q™ ¥rs
keH'®
fif=0 VrsVke K™

Where a is an index of links, x_ is the flow on link a,
f2® denotes flow on path k between OD pair rs, and

q"* is total travel demand between OD pair rs. The
definitional path-link incidence relationship must also
be hold implicitly:

xo= ) ) fi0 (6)

rs KEE -

where @y isa dummy equal to one if link a is on path
k between OD pair rs, and zero otherwise.

Logit-family Route Choice

Models

Generalized Extreme Value
(GEV) Models

[\

Multinomial Logit (MNL) and Its
Modifications

/

Cross-Nested Paired Combinatorial
Logit (CNL) Logit (PCL)

Path-Size

Multinomial C-Logit
Logit Logit

Figure 1. An overview on logit-type models applied in transportation network analysis.
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2.2. C-Logit

The main deficiency of application of MNL model in
network modeling is that this model simply assumes
that all the paths connecting each O-D pair are regarded
by decision makers as independent alternatives.
Accordingly, this approach unrealistically ignores that
fact that in a typical network many paths have shared
segments and in this sense they cannot be considered
as independent alternatives. Therefore, further
research was conducted to overcome the standard logit
drawbacks in the context, specifically the problem of
path overlapping. Cascetta et.al [1996] introduced
the concept of commonality factor for each path and
proposed C-logit, as a modification of the standard
MNL. Choice probability in this model is given by
Eq. 7 where cf,, the commonality factor, is an overall
measure of commonality of path k with other paths.
This can be viewed as a utility correction factor due to
the overlapping problem and is calculated by Eq. 8. In

this equation,l,, and ljdenote lengths of paths k and j
respectively and I, ; 1s the length of common parts of

these paths. fand ¥ are calibration parameters that are
set to one in this research, in accordance with Prashker

and Bekhor [1998].
e Vi —cfy

Fk=m (7)
Lo\

cf, =fn (,’L) 8

. ZH} ®)

2.3. Path-Size Logit

Similar to C-logit model, Ben-Akiva and Bierlaire
[1999] developed path-size logit (PSL), as another
modification of MNL. PSL modifies each utility by
adding the log of path size, instead of subtracting
the commonality factor from each utility. The choice
probability is formulated in Eq. 9. The correction factor

PS5, is called the “size” of path k and is calculated in
Eq. 10, in which L _ is the length of link @ and T, is the
set of links in route k.

EV;{+|.I:IP5;{ Pskev;{

E}-E:{PSJ-EVJ:

P, (9)

E}_E:{EVJ-' +|.I!'.I.P5J-'
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ZC_) a) (10)

JEH

- 3 (9

a€ely,

2.4. Cross-nested Logit

Cross-nested logit (CNL) and paired combinatorial
logit (PCL) are special cases of a more general class
of choice models called generalized extreme value
(GEV) models, derived by McFadden [1978]. CNL
model provides a flexible nesting structure allowing
each alternative to belong to any nest with different
degrees of membership. Overlapping structure of the
nests allows releasing the main theoretical drawback
of MNL model in route choice. In GEV, the probability

that a decision maker chooses alternative k among #
alternatives is given in Eq. 11.
VG (Vys s V)

§ PG[}H:---:}FE{‘]

G is a generating function of K non-negative variables,
Gk is the first-order derivative of G with respect to Yoo
and y, is the exponent of V,. The generating function
must meet certain conditions [McFadden, 1978] as
follows:

i. is homogenous of degree 2 = 0 that is:

Glayy, ., ay;) = a®G(yy, o Vi)
\.(McFadden discussed the condition of homogeneity
of degree one and Ben-Akiva and Lerman [1985]
extended it to homogeneity of any degree)

ii.lim}.l,_HIG(yl,...,yk) =4 Vi=1,..,%K

(11)

iii. The mth cross-partial derivative ofG (Y- » Y, )
with respect to any combination of m distinct ¥;s is
non-negative for odd m and non-positive for even m.
Further, the joint cumulative distribution function of &;
) R T
s is defined as F(&y, ., &5 ) = @618 " Tomss 00,
CNL model has an overlapping structure and was
developed by Vovsha [1997]. Vovsha [1997] and
Prashker and Bekhor [1999] used similar generating
function (Eq. 12) that leads to the choice probability

in Eq. 13.
v = (Y
k

lrl

n
‘Iak}’k) (12)
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exp [Vk +InX,ag, (Z;'EK ‘Iﬂievj )M_ 1]

- = - p 13
b 2icn BXp [Ve +in}, a;ﬂi[sz:{ a:ﬂjevj' )#‘1] Z‘ Pray X Plyla) (13)
— Z [Eje:{“u}'evj]# )X( rxﬂkev‘w )
z b[Z}.E:{ab}.e"’j]“ Ziextg e’
-1 X gy
G(yy, - Z Z [1 Hﬂ}) 1-g; El_, +y e EL_. ”
j=1i=j+1
- Ve Vi T
Lo e’ (1- Ukj) (61_?'? + ei_ﬁ"-’i)
Fk= Vi 1- Ok f Zp,kﬂ F'k|k_;|} (15)

zx ! x;+1[1 ﬂi}')(

1- G j +El :?;{J

=)

i (1 —crk}.)(e

Vs V; 1
1- Tz j 4+e 1—:?;{_;'

— G‘l‘f_l"

e 1-oy;
Vs V;:
—u —

=k el—;?wh,j- + el—:?;{

Lt is a non-negative calibration parameter that should
be less than one in order for the choice model to be
consistent with utility maximization axiom. A typical
value of 0.5 is used for this parameter in this research,
when the estimation stage is skipped.

2.5. Paired Combinatorial Logit

Chu [1989] proposed PCL, in which each pair of
alternatives constitute their own nest and there is a
separate similarity index ( Ue_;.') for each pair of paths.
The generating function and choice probability is as
follow:

The adaptation of PCL for route choice was first done

by Prashker and Bekhor [1998] by attributingcrkj’s
directly to the network topology:

c.= —Iij

i 05

(I,1)

3. Data and Estimation
To calibrate a logit path utility function, a set of stated
preference data as well as a set of perception error data
was collected, in April 2012, in Tehran, the capital of
Iran.
The reason why we designed SP experiments is that

(16)
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1—5‘;{_[' _I_ el—E"h_.J-')

a major challenge in estimating route choice models
with revealed preference data is the large number
of alternatives. Enumerating all possible paths in
real networks is neither practical nor the estimation
of choice models based on that is well-established.
Although logit models allow estimation on a subset of
paths without disturbing consistency of estimates, most
sampling approaches do not reproduce satisfactory
results. For this purpose, paths could have either
equal or unequal chance of selection in the choice set.
Although the first option comes with a simple estimation
procedure, unreasonable paths may be reproduced that
are never even considered by travelers. This leads to
inefficient estimates, since ‘“comparing a person’s
chosen alternative with a group of highly undesirable
alternatives provide little information about the
reasons for person’s choice” [Train, 2009]. Therefore,
the second option which is based on a systematic
selection procedure is usually preferred to obtain
unbiased estimates. The path utilities, however, should
be corrected according to the sampling procedure. The
estimation is challenging, but some correction methods
are discussed in the literature [Frejinger et al. 2009;

Bovy et al. 2009; Prato and Bekhor 2007]. Moreover,
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the actual equilibrium condition existing in reality
determines alternative routes such that they don’t
have enough variability that is essential for precise
estimations.

Paper-based survey questionnaires were
distributed in three high schools, in which students
from different geographical zones are registered. 460
students were asked to pass the questionnaires to one of
their family members who makes daily work trip. 220
completed questionnaires were returned to the school
officials, making a response rate of 48 percent. Each
respondentwas asked to consider 8 experiments, making
a total of 1760 choice situations. Each experiment was
a choice between two hypothetical entirely disjointed
routes that was unlabeled, but their attributes such as
time (in minutes) and cost (in 10 Rials) were given.
This data allows one to apply the standard logit, since
paths are entirely non-overlapping. Further, correlation
of observations over time, which is a critical issue in
standard logit models dealing with repeated choice
data, is considerably mitigated through the use of
unlabeled alternatives. This is because respondents’
choice is, arguably, unaffected by other factors that are
not stated in the question. This method of survey design
allows one to consider the error terms close to white
(pure) noises, although there are unobserved personal
factors that could bring a level of correlation among
choices of each respondent.

Furthermore, family monthly income (in
10 million Rials) and average fuel consumption of
respondent’s personal car in the AM peak (in liters
per 100 kilometers) were asked. Out-of-pocket cost of
travel was, then, estimated based on the fuel cost, path
tolls and path lengths. Additional questions were also
asked to explore traveler’s inaccuracy in perceiving
travel times for three well-known OD pairs in Tehran.
The respondents were requested to write their estimate
for travel time in each path during the AM peak, and
also indicate their level of familiarity to each route.
Actual travel times, on the other hand, were measured
three times and were averaged for each path in different
working days.

This section elaborates estimation of two route choice
models to be implemented in a stochastic traffic
assignment. First, a univariate logit model is estimated,
having the travel time as the only route choice
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determinant. Dispersion coefficient of this model is
estimated based on the collected experimental data and
compared with a typical value that is commonly used
in the literature. Second, a multi-criteria logit utility
is estimated having travel time and cost as the route
choice explanatory variables. Travel cost is normalized
by income to represent a systematic taste variation
among travelers. Four income groups are distinguished
and a utility function is associated to each class in the
traffic assignment phase, assuming an exponential
probability density function for income across people
of each origin.

3.1. Univariate Route Choice Model Estimation
Behavioral aspects of route choice decisions are
reflected in the dispersion coefficient, in a univariate
SUE assignment. Estimation of this parameter has
yet received little attention, due to special issues in
the estimation procedure. This is elucidated below,
followed by a heuristic method that is proposed to
approximate the dispersion coefficient.

Random disturbances are assumed to be
independently and identically distributed in a standard
logitmodel. The density function of Gumbel distribution

with scale parameter ofie == @ and location parameter

of 7 is fg) = pe #=Mg

—g—Hle-n] .
s ., with a

z
T .
e respectively.

¥ = 0.577is Euler’s constant. Assuming a Gumbel
distribution with a normalized-to-zero location
parameter and an arbitrary scale parameter, the logit

. ¥
mean and variance ofy + —and
Ty

MV
E:E'NJ".
identified from the coefﬁcients included in the utility,
as the scale of utility is irrelevant to behavior [Train,
2009]. Traditionally, in estimation of logit models,

formula becomespk = Lt cannot be separately

the scale parameter,fiis normalized to unity (or

Iz
equivalently, the variance is normalized to %) and the
partial coefficients of utility function are estimated due
to this normalization. Nonetheless, one can specify path

utility asl/y, = —t, + £, ¥k in a univariate route

choice model, and consider £ as the scale parameter
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of error distribution and refer to errors for estimation
instead of choices. Although the error terms are not
directly observable, one can accept the assumption
that misestimating the travel times dominates other
unobserved factors and thus differences between
perceived and measured travel times serves as a proxy
of the error term. One may, however, argue that error
terms contain more elements and, therefore, this is a
restrictive assumption. We accept that the assumption
is restrictive for special cases (e.g. recreational routes),
but seems an acceptable simplifier assumption for
regular daily work trips.

A heuristic approach is introduced based on the above-
mentioned supposition, to approximate coefficient of
dispersion. Normalizing the location parameter to zero,
the log- likelihood function may be stated as in Eq. 17,
in which n is the number of observations. Dispersion
coefficient must be estimated such that the first-order
derivative of the log-likelihood function with respect to
6 be equal to zero (Eq. 18).

LL() =Z[1n5’ — s, — e~5%) (17)
i=1
n X \ -85 _
g Ez-—i-Zsie t=10 (18)
i=1 i=1

Having the respondents’ perceived travel time and the
actual travel time for some OD pairs, the error term and,
consequently, the dispersion coefficient was estimate
from Eq. 18. The respondents were also asked whether
they are familiar with the specified route. Based on 96
observations from travelers who were familiar with the
routes, a value of 0.1519 was estimated for 6. Including
unfamiliar users, the estimated dispersion coefficient
reduces to 0.1343, based on 110 observations. A
reduction in the value of the dispersion coefficient
conveys that a larger share of travelers choose longer
paths, when they are not familiar with the routes. This
method is capable of considering different coefficients
of dispersion for different OD pairs, taking the fact into
account that far distant OD pairs tend to have lower
values of the dispersion parameter.

As stated, dispersion coefficient has been set to typical
pre-specified rounded values in most of previous
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studies, instead of calibrating with experimental data.
Let us compare this estimated value with a typical value
of one [Chen et. al, 2003] in a route choice situation
between two paths with five minutes difference in travel
time. The model with a typical dispersion coefficient
predicts a portion of around 0.67 percent for the longer
route, while the calibrated model (8 = 0.1519 )
assigns 32 percent of travelers to the longer path. This
significant difference highlights the determining role
that this coefficient plays in a STA model.

Another analysis is performed to illustrate how
sensitive the dispersion coefficient is to the inaccuracy
level of the travelers in estimating travel time of a route
with a free flow time of, for example, 38 minutes. For
this purpose, 0 is estimated based on 110 synthetic
observations, among which X travelers have 1, 2,
and 3 minutes of prediction error. For instance X = 4,
indicates 4 travelers with 1 minutes, 4 travelers with
2 minutes, and 4 travelers with 3 minutes error and
the other 98 travelers with an exact estimate. For this
hypothetical situation, the value of estimated 6 would
be 0.91. A value of 10 for X yields to a dispersion
coefficient of 0.71. In this case, almost 73 percent of
travelers are perfectly predicting the travel time and the
maximum perception error for the others are less than
only 8 percent. This situation does not seem realistic,
at least for Tehran’s network, and indicates invalidity
of the assumption of unity value for the dispersion
coefficient. Further, Figure 2 illustrates three situations
that lead to 8 =0.15, 0.3, and 0.6. In this figure, 8 =0.15
corresponds to the observed distribution of perception
error for 96 travelers who indicated are familiar with
the given route.

3.2. Multi-Criteria Route Choice Model Estimation
This section discusses a logit path utility function
that is calibrated considering travel time and
normalized out-of-pocket cost. Path utility is defined

as v, =at, +Jg“:°?f, in which I, is the family-
income for person n; and ¢ and t are travel cost and
time, respectively. Minimizing the likelihood function,
estimated values of o and $ turned out to be -0.0891
and -1.1594, respectively. A standard statistical
t-test confirmed that both estimated coefficients are
statistically significant at a 99 percent confidence
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interval. The McFadden pseudo rho squared was
obtained 17 percent at convergence.

4. Numerical Examples

The proposed logit route choice models are applied in
the pedagogical network of Nguyen and Dupuis [1984]
with 13 nodes, 19 links, and 4 OD pairs (Figure 3). OD
pairs of (1,2), (1,3), (4,2) and (4,3) have, respectively,
travel demand of 400, 800, 600 and 200 units. The
results are discussed separately for the univariate and
multi-criteria route choice models.

4.1. Univariate Model

The univariate route choice model was applied for a
typical dispersion parameter of 6=1, and the estimated
parameter of 6=0.1519. The volume-delay function of

T, (x,)= a, + B,x,, in which Tis travel time,

and x_ is flow on link @, is utilized. The values
of parameters a_ and [5_ , however, are presented
in Table 1. Table 2 and 3 provides equilibrium traffic
flow of the univariate route choice model in terms of
link and path flows respectively, for the deterministic,
MNL, C-logit, PSL, CNL, and PCL traffic assignment
models. The outputs reveal that logit-family SUE traffic
assignment models with a dispersion coefficient of 1 is
by and large similar to the deterministic assignment.
Figure 4 illustrates this similarity in terms of link
flows predicted by DUE and PCL model. Therefore,
pre-specification of the dispersion parameter could
even question the primary purpose of the stochastic
traffic assignment models which is accounting for the
randomness in route choice decisions.

100
90
80
70 +—

60
50 4+—

¢ Original Data
(theta=0.15)

w

30 -8

20 -4 i

w0 ==

Percentage of Travellers

[0-10)  [10-20) [20,30) [30,40)

Well-Informed Travellers
(thata=0.3)

u Very Well-Informed Travellers
(theta=0.6)

[40,50]

Percentage of Error in Travel Time Perception

Figure 2. Distribution pattern of travel time perception error data.

Destination

Figure 3. Test network [Nguyen and Dupuis, 1984]
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Table 1. Parameters of link volume-delay functions for test network

1 1 5 i 0.0125
2 1 12 9 0.01

3 4 5 9 0.01

4 4 9 12 0.005
5 5 6 3 0.0075
6 5 9 g 0.0075
7 6 0 D 0.0125
8 6 10 13 0.005
10 3 11 9 0.0125
11 8 2 S 0.0125
12 2 10 10 0.005
13 9 13 9 0.005
14 10 11 6 0.0025
i 11 b 2 0.005
16 11 3 8 0.01

17 12 6 7 0.0125
18 12 8 14 0.001
19 13 3 11 0.001

Table 2. Equilibrium link flow for univariate models

1 | 706 | 676 | 706 675 703 677 707 684 705 677 700
2 | 494 | s24 | 49a 525 497 523 493 516 | 495 523 500
3 100 | 143 362 143 349 144 357 132 311 135 317
4 | 700 | 657 | 438 657 451 656 | 443 | 668 489 | 665 | 433
5 | 440 | 461 598 451 566 | 451 562 457 570 450 | 556
6 | 366 | 358 | 470 367 486 | 371 501 360 | 445 362 | 461
7 | 354 | 364 | 498 364 487 364 476 365 470 365 | 482
g8 | 180 | 223 372 214 337 | 211 324 | 209 | 334 | 209 | 331
o | 100 | 112 184 115 189 115 182 117 179 118 196

10 254 253 313 249 297 249 294 248 290 247 287
11 500 509 407 513 429 513 437 515 441 516 438
12 500 465 483 464 470 464 474 472 468 469 472
13 566 550 424 360 467 562 470 556 467 559 472
14 680 688 856 678 807 675 799 681 802 678 803
15 500 491 593 487 571 487 563 485 559 484 562
16 434 450 576 440 533 438 530 444 533 441 528
17 94 127 272 127 257 125 238 117 234 125 257
18 400 397 222 398 240 398 255 399 262 398 242
19 366 350 424 560 467 j62 470 356 467 359 472
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Table 3. Equilibrium path flows for univariate models

0D Path Link Sequence | DUE

1 2:18-11 00 | 39 9 398 399 98
2 1-5-7-9-11 0 1 38 1 35 1 30 1 31 1 34
5 i-5-7-10-13 O 0 22 4] 20 1] i8 0 20 0 ral
1-2 4 1-5-8-14-15 0 0 26 0 25 0 22 0 25 0 27
5 1-6-12-14-15 0 0 18 0 18 0 22 0 17 0 18
6 2-17-7-8-11 0 1 32 0 27 0 23 0 18 0 26
7 2-17-7-10-15 0 0 18 0 16 0 14 0 12 0 14
8 2-17-8-14-15 0 0 23 0 19 0 17 0 15 0 18
9 1-6-13-19 366 353 284 363 325 366 | 335 358 | 323 361 330
10 1-5-7-10-16 203 168 | 106 | 165 97 165 96 174 | 107 | 170 97
1-3 11 1-5-8-14-16 136 148 | 126 142 109 | 140 103 150 | 121 144 | 112
12 1-6-12-14-16 ] 5 85 4 74 5 81 2 61 1 61
13 2-17-7-10-16 50 67 21 68 a3 68 Q0 65 88 a7 24
14 2-17-8-14-16 44 59 108 58 102 56 54 51 100 57 105
15 4-12-14-15 500 | 457 | 285 | 457 | 294 | 456 | 291 | 468 | 325 | 465 | 325
16 3-5-7-9-11 100 110 114 113 127 114 129 116 130 117 136
4-2 17 3-5-7-10-15 0 17 67 ' 63 15 63 8 55 10 51
18 3-5-8-14-15 0 15 80 14 72 15 75 8 63 8 59
19 3-6-12-14-15 0 0 54 0 45 0 41 0 27 0 29
20 4-13-19 200 197 | 118 | 197 | 123 | 197 | 118 | 198 | 129 | 197 | 123
21 4-12-14-16 0 3 35 3 34 3 34 2 35 2 35
4-3 22 3-6-13-19 0 0 22 0 18 0 17 0 15 0 19
25 3-5-7-10-16 ] 0 8 0 9 0 13 0 9 0 9
24 3-5-8-14-16 0 0 10 0 10 0 13 0 9 0 10
25 3-6-12-14-16 0 0 7 0 6 0 5 0 2 0 4
800 T 900 I ]
700 e 0 =——————
@ 600 - ENSEREENy duns w 700 MR W o
2 Lo E ] |
5 8 600 ===k 2
= -00 = = ===
= - 500 +— i
= 400 =] I —p——
3 5 400 - ==
£5] 300 = 300 =T |
: : ] - .: “
& 200 B 200 :
100 100 '
0 0 == .
0 200 400 600 200 0 200 400 600 800
PCL-SUE Link Flows (theta=1.0) PCL-SUE Link Flows (theta=0.15)
(a) Estimated dispersion coefficient. (b) Typical dispersion coefficient.

Figure 4. spersion coefficient effect on similarity between DUE and SUE flows.
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Table 2 provides equilibrium link flows based on the
estimated and typical dispersion parameters for five
different model specifications, namely MNL, C-logit,
PSL, CNL, and PCL. A comparison of the link flows
with DUE reveals that stochastic traffic assignment
is more sensitive to calibration of the dispersion
parameter than to the route choice model specification.
To further illustration of this fact, a PCL model with a
calibrated @ is set as the comparison basis in Figure 5,
and its predicted link flows are presented versus a MNL
model with calibrated 0 and also a PCL with typical 6.
As shown in this figure, calibration of the dispersion
parameter makes more tangible changes compared to
adopting a more robust model specification.

Figures 6 and 7 provide a graphical sensitivity analysis
on the importance of specification of 6 on predicted
equilibrium flow, for some certain links and paths of
our illustrative network, respectively. Two models were
selected as the basis for comparison: MNL model as
the simplest model and PCL model as one of the most
advanced models which appropriately addresses path
correlation problem. Two primary achievements can be
gained from the figures. First, according to both figures,
one can easily observe that the degree of sensitivity
of the flow to the value of 0 is maximal in an interval

about 6=0 to 6=0.4, in which according to our data we
expect the actual value of 6 for most real networks
locate. This finding in fact emphasizes the importance
of paying sufficient attention to the estimation of 6 in
a precise enough fashion in planning. Second, as can
be seen from Figure 7, when 6 approaches to zero (or
equivalently, the variance of perception errors becomes
infinite), MNL path flows for a particular OD pair do
tend to equal values, but corresponding PCL path flows
do not. This fact indeed contradicts the proposition
stated in some previous studies [Prashker and Bekhor,
2000] claiming that for probabilistic models, as
perception error variance tends to infinity, the path
flows connecting each particular OD pair approaches
to same equal values. As the figure obviously shows
this statement is only valid for MNL model, and for
the models other than MNL which are able to represent
path overlapping is not true. For this class of models,
it is the covariance structure that determines path flows
when the variance becomes infinite.

It is argued that equilibrium traffic flows of the stochas-
tic and deterministic traffic assignments become very
similar as a network becomes more congested [Dagan-
zo and Sheffi, 1977; Sheffi and Powell, 1981].

i Sz=zzz=zzt;
L SSSs=soass
= = 600 e
| i :
= S 400 5 A0
:’E Q/: i
@ s 300 BN EsEEESEEESESESESE
- = : .
E 200 - o

100

0 ! i
0 200 400 600 800 1000

PCL-SUE Link Flows (theta=0.15)

900 : i : i
Bl SSESSSSsss 4S5
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-l | i i .:
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Figure 5. Effects of model specification and dispersion parameter calibration on predicted flow.

International Journal of Transportation Engineering,
Vol.1/ No.3/ Winter 2014

162




Milad Haghani, Zahra Shahhosseini, Amir Samimi, Hedayat. Z. Ashtyani

—4—Link 1
| ink 8

Link Flow

—ar—Link 11

=#=Link 19

@) MNL model.

== jrik 1
—8—|ink 8
——Link 11

—8—ink 19

(b) PCL model

Figure 6. Sensitivity of link flows to the value of dispersion parameter (0).
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Figure 7. Sensitivity of path flows to the value of dispersion parameter (0).
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This argument is made using typical values for input
calibration parameters. Therefore, we made a sensi-
tivity analysis to investigate the level of congestion at
which SUE and DUE give rise to very similar results.
The result is enlightening for determining a scope of
SUE models. For this purpose, we designed some ex-
periments in which the vector of travel demand was
multiplied by a factor of A to change the congestion
level. As illustrated in Figure 8, DUE and SUE get sim-
ilar in congested networks, but the congestion level at
which the two methods become quite similar is differ-
ent when the dispersion parameter is estimated. A high
degree of similarity is shown having a typical value of
one for 6, even for the base demand vector of our ex-
ample. While, DUE and SUE are yet different setting
6=0.15 and of A=3. Even for A=40, our experience re-
vealed that marginal differences still exist between the
two approaches. Furthermore, PCL and DUE outputs
are compared in Figure 9 for different levels of conges-
tion, and a dispersion parameter of 0.15. Link flows of
DUE are regressed versus PCL-SUE model. The values
of estimated intercept, slope, and their 95% confidence
intervals along with the coefficient of determination
(R?)are illustrated in Figure 9. According to this figure,
as A increases, the intercept becomes more statistically
insignificant and the slope is estimated more precisely.
A general increase in R?, on the other hand, indicates
an increase in similarity between SUE and DUE results
as the network becomes more congested. Our finding
in this area, however, is somewhat different than what
was stated by Sheffi and Powell [1981]. According to
their statement, one can conclude that even in mod-
erately congested networks, SUE and UE approaches
both lead to quite similar results which in fact questions
the need for resorting to SUE models and undertak-
ing their more computational difficulties. Our finding,
however, is rather different and shows a considerable
difference between UE and SUE even for highly con-
gested conditions. The source of this disagreement be-
tween the two conclusions is indeed in specification of
the input parameter.

4.2 Multi-Criteria Model

The multi-criteria route choice model requires income
of the travelers, in addition to travel time and cost, to
perform the assignment. To obtain this information,
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travelers are divided into four income groups (<5, 5-10,
10-20, and >20 million Iranian Rials), each of which
has an exponential distribution, assuming the average
monthly income of 10 and 15million Iranian Rials in
zone 1 and 4, respectively.

Equilibrium flows are obtained by a path-based sto-
chastic equilibrium algorithm, the steps of which are
as follows. This is a modification of MSA algorithm
[Sheffi and Powell, 1982] for expanding utilities to
multi-criteria case and differentiating classes of in-
come. The adaptation of the algorithm has originally
been made in this study.

Step O: Initialization:

i Compute  monetary

path  costs (e;.7),

having path lengths (137}, fuel price (FP), aver-
age rate of fuel consumption (FC), and path tolls,

tollly = X _Toll .60; VrsVke K™
cif = (FP X FCXIF) + tolllf Vrs, Wk e K

ii. Set each link’s travel times equal to free-flow
times (T, = T Wa), and compute initial path times
(= =3 19672 vrs, vk € K).

iii. Compute representative utility of each path
for each income group (i):

; ‘ In(ci®
L’;f‘ﬁ} = cxtf‘m +8 (Ik ) Vrs Wk € K™, Vi
i
iv. Perform a stochastic network loading to ob-

tain initial flows . (f,: ) ¥ rs,Vk € K'¥, Vi)
V. Compute:

O =559 vesvke ke

Vi. Setcounternn = 1.
Step 1: Update:

1. Compute link flows:

M=% T s va

ii. Update link travel times:

(n) _ (n)
T,W = E(xﬂ ) Va
iii. Update path travel times:
e =3 16 s, vk e K
iv. Update path utilities:
i I (ghE
Vo™ =at ™ + g s, vk €K™, Vi
* i
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Step 2: Direction Finding: -
i. Compute path choice probabilities {P;:f "
and perform a stochastic network loading to compute

auxiliary path flows [ hﬂin}

-rs(-n} z h-rs(-n} z{qm. % P-rs(-n}j

Step 3: Move:

i. Compute path flows as convex com-

binations of auxiliary flows and existing flows:
re(n+l) _

1 _ 'r's(n})

A (w7 -

Step 4: Convergence Check.

i Compute RMSE as a measure of convergence:

HeET ‘j(Zﬂiﬂ?”) er Zk (h:s{ﬂ} B fkﬂ(ﬂ} )2

If RMSE < g5, orn> Ny, then set the

h‘?"ﬂ' (ﬂ}

rain)
fk k

1i.

existing flows as SUE, otherwise, set = = 7 + 1 and

gotostep 1. £5 and NV are predetermined constants.

Tables 4 and 5 compares the equilibrium traffic flow of
stochastic logit-family traffic assignment models based
on the estimated multi-criteria path utility. The multi-
criteria assignment is sensitive to travel cost of the
travelers, and therefore, can predict effects of a wide
range of pricing policies. For illustration purposes, we
have set a fixed toll of 10, 10, and 20 thousands Iranian
Rials, respectively, for links 5, 7 and 8. This pricing
scheme is denoted by Tolled and its equilibrium flows
are compared to the Base condition, in Tables 4 and 5.
Paired combinatorial logit model, for example, predicts
a total travel time of 108,271 minutes, and a total vehi-
cle-kilometers of 59,733 (setting an average occupancy
rate of 1.2) for the base condition. According to the
PCL forecasts, total travel time and total vehicle-kilo-
meter is expected to improve by 1.63 and 0.2 percent
respectively under the aforementioned pricing policy.

Table 4. Equilibrium link flows of multi-criteria models

Vol.1/ No.3/ Winter 2014

1 [ 2

2 494 463 479 | 464 4m 59| 412 459 431 468 4483
3 100 | 450 | 390 | 400 | 359 | 422 | 380 | 37 331 | 379 | 337
4 T00 370 410 400 441 378 420 426 469 121 463
5 440 626 551 616 191 642 514 638 503 636 483
6 i66 430 560 320 j01 21 393 457 345 473 360
7 354 | 586 | 324 | 556 | 490 | 556 | 491 | 557 | 493 | 569 | S04
8 180 ]| 392 | 302 | 317 | 239 | 335 | 254 | 344 | 245 | 340 | 245
9 100 | 221 | 188 J 234 | 198 | 219 | 185 | 220 | 183 | 238 | 2m
10 | 254 | 365 | 336 | 321 | 292 | 337 | 306 | 338 | 311 | 331 | 303
11 500 303 i 442 437 430 426 435 430 434 429
12 300 474 549 42 507 463 534 457 339 160 540
13 366 T 411 478 M 4335 481 427 473 436 483
14 680 | 866 | 851 | 759 | 747 | 798 | 788 | 800 | 7R84 | 800 | 785
15 500 | 607 | 609 | 558 | 563 ] 570 | 574 | 565 | 570 | 566 | 571
16 434 ) 623 | 579 | 522 | 476 | 365 | 519 | 573 | 525 | 64 | 517
17 o4 292 | 275 | 257 | 239 | 249 | 232 | 243 | 233 | 272 | 257
13 400 171 a4 207 239 210 240 215 248 195 228
19 566 § 377 | 421 | 478 | 524 | 435 | 481 | 427 | 475 | 436 | 483

* Base
** Tolled
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Table 5. Equilibrium path flows of multi-criteria models

1 2-18-11 400 J171] 204 |207 | 239 | 210 ) 240215 | 248 | 195 | 228
2 1-5-7-9-11 0 52| 38 | 45| 32 | 42 J 30 J 46 | 31| 48 | 35
3 1-5-7-10:15 0 30| 24 | 25| 19| 24 | 19§27 | 21|28 | 22
4 1-5-8-14-15 0 2] 22 7| 18|26 J 18 Q20| 19|32 | 21
1.2 3 1-6-12-14-13 0 24 28 25 | 28 | 31 34 24 29 | 25 29
[ 2-17-7-9-11 0 40 | 39 | 31 | 30 | 29 | 27T | 25 | 24 | 33 | 32
7 2-17-7-10-15 0 241 24 18 | 18 | 18 | 17 J 15| 16| 18 | 18
3 2-17-8-14-15 0 27 21 |21 | 16 | 20 | 15 18 | 14 | 22 | 16
[ 1-6-13-19 366 [ 252 206 | 345 [ 300 | 314 | 358 | 204 | 344 | 306 | 352
10 1-5-7-10-156 203 Q122 | 102 |101 | &1 | 109 ] B9 J125| 97 | 112 | 89
11 1-5-8-14-16 136 J127]| 91 | 95 | 65 | 1001 ] 70 119 | 76 | 109 | TO
1-3 12 1-6-12-14-16 0 9Ty 120 | 73 | 89 | 92 112} 74 | 102 | T3 | o8
13 2-17-T-10-16 50 95 | 103 | 95 | 100 | 94 | 98 92 | 107 | 100 | 109
14 2-17-8-14-16 44 Q105 88 | 91 | 750 89 § 74 ) 93 | 74 | 100 | 82
15 2121415 500 J235] 271 |255 [ 291 | 243 | 280277 | 316 | 279 | 317
16 3.5-78-11 100 J1300 111 |159 | 136 | 149 | 128 J 149 | 128 | 157 | 134
42 17 3-5-7-10-15 0 7o | 72 | 69 | 62 | 74 | 67 | 65 | 50 | 61 | 34
18 3-5-8-14-15 0 Tl 69 | 71| 5581 |64 ] 70| 53] 64| 46
19 3512-14-15 0 6§ 77 | 49 | 56 | 53 | a0 | 39 | 45 | 40 | 49
20 4-13-19 200 97 | 98 |1153 | 114 | 9% J 101 Q112 112 | 106 | 107
21 4.12-14-16 0 38 ) 41 | 34| 36 | 35 | 38 Q38 | 42|37 | 40
22 3-6-13-19 0 Tl 27T |20 | 2022|2219 | 19| 24 | 24
4.3 23 3-5-7-10-16 0 13 11 14 | 12 |18 | 16 14 | 12| 13 | 12
24 3-538-14-16 0 4] 11 13 | 10 | 17 |15 1153 | 10| 13 | 10
25 36-12-14-16 0 1 12 7 8 8 ) 5 5 7 8
* Base
** Tolled

5. Summary, Conclusions and Future Re-
search Directions

5.1 Summary

A range of logit-type stochastic route choice models
from the standard logit and its modifications to GEV-
based models, in which theoretical deficiencies of early
models are addressed to a possible extent, were dis-
cussed.

A univariate and a multi-criteria logit path utility func-
tion was estimated based on experimental data and
were applied to a stochastic logit-based TA model.
Significance of calibrating the dispersion parameter in
a univariate route choice model was emphasized and
a heuristic method was proposed to estimate this pa-
rameter. The proposed estimation method does not re-
quire choice data and hence, overcomes the problem of
choice-set generation, the main challenge which makes
estimation of route choice models highly challenging.
The proposed estimation method, however, utilizes a
simplifier underlying assumption which makes us re-
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gard the method as an approximate but practical ap-
proach of calibration.

5.2 Conclusion

This study was primarily set out to emphasize the im-
portance of estimation in probabilistic route choice
modeling, which has received much less attention than
model specification in the literature. The chief findings
of this study can be outlined as follows:

. Running different stochastic models of TA
with the common value of input parameter 6=1 re-
vealed that it would not lead to a considerably different
result than DUE approach. Accordingly, application of
this category of TA models in this way could not be
practically justifiable.

. For a specific value of dispersion parameter,
our investigation showed that there is not a highly sig-
nificant difference between simple and advanced choice
models in STA. This indicates that simple modifications
of MNL model, such as C-logit and PSL—which sim-
ply addresses path correlation without bringing about
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too much computational difficulty in analysis— could
suffice for many planning purposes.

. Comparison also showed that estimation of
the input parameter of SUE models on TA outcome is
far more influential than that of utilization of theoreti-
cally appealing choice models. As a result, in real plan-
ning it seems that analyst has to give more priority to
precise estimation of the parameters than to selection
of a complicated model. In other words, we found that
calibration of the route utility based on the experimen-
tal data is more crucial than adapting advanced speci-
fications for the choice model. Hence, application of
advanced models in this area seems not to be justifiable
without precise calibration.

. A marginal investigation, as a sensitivity anal-
ysis, was also conducted showing that in spite of the
former statements made in previous studies [Daganzo
and Sheffi, 1977; Sheffi and Powell, 1981], even in
high level of congestion there is considerable differ-
ences between the prediction of UE and SUE models
for network flow pattern.

5.3. Future Research Directions

This study is one of the early efforts that estimates path
utility based on experimental data, and has certain limi-
tations that deserve more investigation in future stud-
ies:

. The deployed traffic assignment model is uni-
modal with fixed demand.

. Path utility function could encompass more
explanatory variables, should a rich set of data and
more complicated traffic assignment routines were
available.

. Random taste variation and correlation over
repeated choices can simultaneously be accounted for
in a mixed discrete choice specification.

. Random utility theory is capable of evaluat-
ing the effects of supply management policies by in-
troducing the concept of consumer surplus (CS). In tra-
ditional approaches, the performance of network and
the response of travelers to changes in the system, such
as road pricing and new road designs, were conducted
by overall measures such as total travel time. While
these overall measures more evaluates the consequenc-
es from the supplier point of view than users, the CS

International Journal of Transportation Engineering,
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measure can not only consider the problem from trave-
lers’ viewpoint, but also can discriminate between the
effects of policies on different groups of users which
can be crucial for equity considerations. Evaluation of
consumer surplus variation due to changes in the traf-
fic system, however, is challenging for non-linear-in-
variables models, and is open to further research.

. In addition, application of the studied SUE
models in real-sized networks will introduce two fur-
ther issues to the problem: path generation and opti-
mization of the step-size in the convex combination
procedure, which both were beyond the scope of this
study. In spite of some previous researches in the litera-
ture, these two problems also require more investiga-
tions.
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