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Abstract   
There is a growing recognition that discrete choice models are capable of providing a more realistic picture of route 

trigger the application of random utility models in the route choice literature.
This paper focuses on path-based, logit-type stochastic route choice models, in which several forms of logit-family 
models have been calibrated using practical data and examined on an illustrative network. For each type of the logit-

approach is a univariate route choice model. Challenges in the estimation of path utility are discussed and a heuristic 
estimation algorithm for univariate models is proposed. As the proposed approximate calibration method does not 
require resorting to choice data, it can be regarded as a more practical method than the traditional approach and can 

a multi-criteria path utility function considering travel time and monetary cost along with travelers’ income to deter-

arises from the fact that most of the efforts made in stochastic assignment literature have been dedicated to apply theo-
retically appealing choice models, and model calibration by comparison, have not received considerable attention.
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1. Introduction

assignment is a fundamental part of quantifying network 
performance and directly affects policy assessment 
outcomes. Travel time is the only determinant in the 
conventional route choice models, while there are other 
factors affecting route choice, such as out-of-pocket 
cost and even demographics of travelers [Dial, 2000]. 
Having a handful number of socio-economic variables 
for each traveler in the emerging activity-based 
models, behavioral and realistic route choice models 
are becoming even more acknowledged in the network 
policy assessments. 

of the practice and has been established based on the 
Wardrop’s user equilibrium (UE) criterion, stating 
that “the journey times in all routes actually used are 
equal and less than those which would be experienced 
by a single vehicle on any unused route” [Wardrop, 
1952]. Route choice procedure is a critical inner 

the assumptions of the analyst about user’s behavior. 

problem is an all-or-nothing assignment which allocates 
all trips to quickest paths. However, it is argued that 

it utilizes some implicit restrictive assumptions. DUE 

assignment (STA) models, on the other hand, have been 
developed to relax these assumptions to some extent. 

user equilibrium (SUE) stating that “in a SUE network, 
no user believes he can improve his travel time by 
unilaterally changing routes”. 
 Random utility models are applied in SUE to 
account for the randomness in route choice decisions. 
Logit-family models are commonly used, as they have 
a closed form formula for the route choice probability 

that ease the estimation and interpretation of the 
results. SUE models, however, are predominantly 
applied having travel time as the only determinant of 
path utilities, although there is no theoretical limitation 
on the number of explanatory variables in random 
utility modeling. Moreover, according to the literature, 
parameters of path utility functions are generally 

set to rounded numbers such as the unity rather than 
being estimated based on the observed data [Chen et 
al. 2003; Prashker and Bekhor, 1998], whereas the 
parameters convey important behavioral information 

Motivated by the above discussion, this study is to 
estimate and apply a single-criteria as well as a multi-
criteria path utility function containing travel time 
and costs divided by income, both calibrated based 
on experimental data. The behavioral parameter in all 
the univariate logit-family models of SUE known as 
the dispersion parameter that is the only behavioral 
parameter directly related to trip maker’s perception 
is calibrated using a heuristic method proposed in this 

in the path utility function. Changing the interpretation 
of this parameter to an equivalent standpoint, a 
heuristic algorithm for estimation of this parameter is 
introduced that can be applied in the univariate path 
utility situation. Performance of the calibrated models 
is compared with different types of logit-family route 
choice models in the pedagogical network of Nguyen 
and Dupuis [1984].

models applied in this study have all been previously 
developed in the literature, however to the best of 
our knowledge, no comprehensive comparison has 
been made formerly on the difference of the result 

Moreover, most of the previous efforts have been 
dedicated to development of the more advanced choice 
models. This study, however, was aimed to consider 
both application and estimation phases equally, as 
it has been shown in this study that the estimation is 
not only a subordinate issue in network analysis but 
also can much more affect the prediction result than 
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approximate method of calibration for univariate 

time with the aim of alleviating the intrinsic challenges 
in calibration of SUE models. Finally, application of 
different logit-family models in a multi-criteria basis, 
while including demographic aspects of travelers to TA 

The remaining parts of the paper are organized as 

for different types of logit-family STA models are 
provided. The examined models include a broad 
range of models introduced in the literature, from the 

section 3, the data sets and data collection methods 
are explained. Two types of data have been collected 
for this study, one for univariate models and the other 
for multi-criteria models. The heuristic approach for 
calibration  of univariate SUE models, as well as the 
results of estimations (for both univariate and Multi-
criteria models) are elaborated in this section. Section 
4 is dedicated to examining the results of applying 
the estimated SUE models to an illustrative network. 
The equilibrium algorithm, adapted and applied to 
this study, is introduced in this section. Furthermore, 

is made, the effect of congestion on similarity of UE 

[1981] are reconsidered and the potential capability 
of the proposed multi-criteria model in assessment of 
monetary transportation supply management policies, 
such as road or fuel pricing, are illustrated. Section 5 

directions for future researches are also put forward in 
this section.

2. Theoretical Background
Consider trip-maker n facing  paths in the set of 

 for traveling from zone r to s. The utility that n 
perceives from path k is denoted by Unk in Eq. 1, 
and is decomposed into a deterministic (Vnk), and a 

nk). The latter encompasses all the 

and properties of the route choice model.

                                                                             (1)
N is the total number of trip makers between origin r 
and destination s. Superscript rs is omitted for the sake 
of ease of reference. Vnk is a function of explanatory 

models, where tk denotes the travel time of path k. is 
termed the “dispersion parameter”.
 According to the random utility theory postulation, 
each traveler chooses the path that he believes is 
the most desirable. Therefore, the probability of 

Denoting the vector of error terms for person n as                                      

 , and the joint probability 

density function of  as  , Pnk can be restated 
as in Eq. 3, in which I is an indicator function which is 
equal to 1 when the event in the parenthesis occurs and 
is zero otherwise [Train, 2009].

For logit-family models, f
above integral can analytically be solved and stated as a 
closed form. Tractability of the estimated probabilities 
makes this class of models the most widely used in the 
choice modeling context. ¬
According to the literature, there is a broad range 
of logit-type models developed and applied in the 
literature of transportation networks modeling. Figure 
1 provides a general overview of these models that their 
theoretical frameworks are outlined in the following 
subsections.

2.1.  Multinomial Logit (MNL)
MNL model is derived by assuming independently 
and identically extreme value distribution for the 
error terms. This results in a diagonal homoskedastic 
covariance matrix of the errors, and the following 
choice probability:

(2)

(3)
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Models 

Generalized Extreme Value 
(GEV) Models 

Multinomial Logit (MNL) and Its 
Modifications 

Cross-Nested 
Logit (CNL) 

Paired Combinatorial 
Logit (PCL) 
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Logit 

C-Logit Path-Size 
Logit  

Figure 1. An overview on logit-type models applied in transportation network analysis.

The well-known Dial’s algorithm [Dial, 1971], also 
called STOCH, loads network according to the above 
equation without a need to generate paths explicitly. 
This link-based algorithm also reduces the set of all 
paths to a subset of paths as choice set of travelers.
Paths attribute and, as a result, their systematic utilities 

Therefore, it must be determined simultaneously with 
path choice probabilities, which indicates the concept 
of equilibrium. Multinomial Logit-based SUE was 

optimization problem. Evaluation of the objective 

the Method of Successive Averages (MSA), a convex 
combinations method with predetermined sequences 

conditions under which MSA converges, and showed 

also heuristic methods which optimizes step sizes for 
solving Fisk’s formulation [Chen and Alfa, 1991]. The 
equivalent mathematical formulation of MNL-SUE, 
formulated by Fisk (1980), in the notation of single-
criterion case is as follows:

Where a is an index of links, xa

 k between OD pair rs, and 

 is total travel demand between OD pair rs. The 

be hold implicitly:

where  is a dummy equal to one if link a is on path 
k between OD pair rs, and zero otherwise.

(4)

(5)

(6)
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2.2.  C-Logit

network modeling is that this model simply assumes 
that all the paths connecting each O-D pair are regarded 
by decision makers as independent alternatives. 
Accordingly, this approach unrealistically ignores that 
fact that in a typical network many paths have shared 
segments and in this sense they cannot be considered 
as independent alternatives. Therefore, further 
research was conducted to overcome the standard logit 

path overlapping. Cascetta et.al [1996] introduced 
the concept of commonality factor for each path and 

MNL. Choice probability in this model is given by 
Eq. 7 where cfk, the commonality factor, is an overall 
measure of commonality of path k with other paths. 
This can be viewed as a utility correction factor due to 

this equation,  and denote lengths of paths k and j 

respectively and  is the length of common parts of 

these paths. and  are calibration parameters that are 
set to one in this research, in accordance with Prashker 
and Bekhor [1998].

2.3. Path-Size Logit
Similar to C-logit model, Ben-Akiva and Bierlaire 
[1999] developed path-size logit (PSL), as another 

adding the log of path size, instead of subtracting 
the commonality factor from each utility. The choice 
probability is formulated in Eq. 9. The correction factor   

 is called the “size” of path k and is calculated in 

Eq. 10, in which  is the length of link  and  is the 
set of links in route k.

2.4.  Cross-nested Logit
Cross-nested logit (CNL) and paired combinatorial 
logit (PCL) are special cases of a more general class 
of choice models called generalized extreme value 
(GEV) models, derived by McFadden [1978]. CNL 

each alternative to belong to any nest with different 
degrees of membership. Overlapping structure of the 
nests allows releasing the main theoretical drawback 

that a decision maker chooses alternative k among  
alternatives is given in Eq. 11. 

G is a generating function of  non-negative variables, 
Gk  yk, 
and yk is the exponent of Vk. The generating function 
must meet certain conditions [McFadden, 1978] as 
follows:
i.  is homogenous of degree ; that is:

\.(McFadden discussed the condition of homogeneity 
of degree one and Ben-Akiva and Lerman [1985] 
extended it to homogeneity of any degree)

ii. 

iii. The mth cross-partial derivative of
with respect to any combination of m distinct �
non-negative for odd m and non-positive for even m.
Further, the joint cumulative distribution function of 

 = .
CNL model has an overlapping structure and was 
developed by Vovsha [1997]. Vovsha [1997] and 
Prashker and Bekhor [1999] used similar generating 
function (Eq. 12) that leads to the choice probability 
in Eq. 13.

(7)

(8)

(9)

(10)

(11)

(12)

(y1,... , yk )

(y1,... , yk )
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 is a non-negative calibration parameter that should 
be less than one in order for the choice model to be 
consistent with utility maximization axiom. A typical 
value of 0.5 is used for this parameter in this research, 
when the estimation stage is skipped.

2.5. Paired Combinatorial Logit
Chu [1989] proposed PCL, in which each pair of 
alternatives constitute their own nest and there is a 
separate similarity index ( ) for each pair of paths. 
The generating function and choice probability is as 
follow:

by Prashker and Bekhor [1998] by attributing ’s 
directly to the network topology:

3. Data and Estimation     
To calibrate a logit path utility function, a set of stated 
preference data as well as a set of perception error data 
was collected, in April 2012, in Tehran, the capital of 

The reason why we designed SP experiments is that 

a major challenge in estimating route choice models 
with revealed preference data is the large number 
of alternatives. Enumerating all possible paths in 
real networks is neither practical nor the estimation 
of choice models based on that is well-established. 
Although logit models allow estimation on a subset of 
paths without disturbing consistency of estimates, most 
sampling approaches do not reproduce satisfactory 
results. For this purpose, paths could have either 
equal or unequal chance of selection in the choice set. 

procedure, unreasonable paths may be reproduced that 
are never even considered by travelers. This leads to 

chosen alternative with a group of highly undesirable 
alternatives provide little information about the 
reasons for person’s choice” [Train, 2009]. Therefore, 
the second option which is based on a systematic 
selection procedure is usually preferred to obtain 
unbiased estimates. The path utilities, however, should 
be corrected according to the sampling procedure. The 
estimation is challenging, but some correction methods 
are discussed in the literature [Frejinger et al. 2009; 
Bovy et al. 2009; Prato and Bekhor 2007]. Moreover, 

(13)

(14)

(15)

(16)ij= ———
lij

(li lj)
0.5
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the actual equilibrium condition existing in reality 
determines alternative routes such that they don’t 
have enough variability that is essential for precise 
estimations.
 Paper-based survey questionnaires were 
distributed in three high schools, in which students 
from different geographical zones are registered. 460 
students were asked to pass the questionnaires to one of 
their family members who makes daily work trip. 220 
completed questionnaires were returned to the school 

respondent was asked to consider 8 experiments, making 
a total of 1760 choice situations. Each experiment was 
a choice between two hypothetical entirely disjointed 
routes that was unlabeled, but their attributes such as 
time (in minutes) and cost (in 10 Rials) were given. 
This data allows one to apply the standard logit, since 
paths are entirely non-overlapping. Further, correlation 
of observations over time, which is a critical issue in 
standard logit models dealing with repeated choice 
data, is considerably mitigated through the use of 
unlabeled alternatives. This is because respondents’ 
choice is, arguably, unaffected by other factors that are 
not stated in the question. This method of survey design 
allows one to consider the error terms close to white 
(pure) noises, although there are unobserved personal 
factors that could bring a level of correlation among 
choices of each respondent. 
 Furthermore, family monthly income (in 
10 million Rials) and average fuel consumption of 
respondent’s personal car in the AM peak (in liters 
per 100 kilometers) were asked. Out-of-pocket cost of 
travel was, then, estimated based on the fuel cost, path 
tolls and path lengths. Additional questions were also 
asked to explore traveler’s inaccuracy in perceiving 
travel times for three well-known OD pairs in Tehran. 
The respondents were requested to write their estimate 
for travel time in each path during the AM peak, and 
also indicate their level of familiarity to each route. 
Actual travel times, on the other hand, were measured 
three times and were averaged for each path in different 
working days. 
This section elaborates estimation of two route choice 

assignment. First, a univariate logit model is estimated, 
having the travel time as the only route choice 

estimated based on the collected experimental data and 
compared with a typical value that is commonly used 
in the literature. Second, a multi-criteria logit utility 
is estimated having travel time and cost as the route 
choice explanatory variables. Travel cost is normalized 
by income to represent a systematic taste variation 
among travelers. Four income groups are distinguished 
and a utility function is associated to each class in the 

probability density function for income across people 
of each origin. 

3.1. Univariate Route Choice Model Estimation 
Behavioral aspects of route choice decisions are 

SUE assignment. Estimation of this parameter has 
yet received little attention, due to special issues in 
the estimation procedure. This is elucidated below, 
followed by a heuristic method that is proposed to 

 Random disturbances are assumed to be 
independently and identically distributed in a standard 
logit model. The density function of Gumbel distribution 

with scale parameter of  and location parameter 

of  is  , with a 

mean and variance of and , respectively. 

is Euler’s constant. Assuming a Gumbel 
distribution with a normalized-to-zero location 
parameter and an arbitrary scale parameter, the logit 

formula becomes .  cannot be separately 

uded in the utility, 
as the scale of utility is irrelevant to behavior [Train, 
2009]. Traditionally, in estimation of logit models, 

the scale parameter, is normalized to unity (or 

equivalently, the variance is normalized to ) and the 

to this normalization. Nonetheless, one can specify path 

utility as  in a univariate route 

choice model, and consider  as the scale parameter 
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of error distribution and refer to errors for estimation 
instead of choices. Although the error terms are not 
directly observable, one can accept the assumption 
that misestimating the travel times dominates other 
unobserved factors and thus differences between 
perceived and measured travel times serves as a proxy 
of the error term. One may, however, argue that error 
terms contain more elements and, therefore, this is a 
restrictive assumption. We accept that the assumption 
is restrictive for special cases (e.g. recreational routes), 

regular daily work trips. 
 A heuristic approach is introduced based on the above-

dispersion. Normalizing the location parameter to zero, 
the log- likelihood function may be stated as in Eq. 17, 
in which n is the number of observations. Dispersion 

derivative of the log-likelihood function with respect to 
 be equal to zero (Eq. 18).

Having the respondents’ perceived travel time and the 
actual travel time for some OD pairs, the error term and, 

from Eq. 18. The respondents were also asked whether 

observations from travelers who were familiar with the 
routes, a value of 0.1519 was estimated for 

reduces to 0.1343, based on 110 observations. A 

conveys that a larger share of travelers choose longer 
paths, when they are not familiar with the routes. This 

of dispersion for different OD pairs, taking the fact into 
account that far distant OD pairs tend to have lower 
values of the dispersion parameter. 

studies, instead of calibrating with experimental data. 
Let us compare this estimated value with a typical value 
of one [Chen et. al, 2003] in a route choice situation 

predicts a portion of around 0.67 percent for the longer 
route, while the calibrated model (  ) 
assigns 32 percent of travelers to the longer path. This 

Another analysis is performed to illustrate how 

level of the travelers in estimating travel time of a route 

observations, among which X travelers have 1, 2, 
and 3 minutes of prediction error. For instance X = 4, 
indicates 4 travelers with 1 minutes, 4 travelers with 
2 minutes, and 4 travelers with 3 minutes error and 
the other 98 travelers with an exact estimate. For this 

be 0.91. A value of 10 for X yields to a dispersion 

travelers are perfectly predicting the travel time and the 
maximum perception error for the others are less than 
only 8 percent. This situation does not seem realistic, 
at least for Tehran’s network, and indicates invalidity 
of the assumption of unity value for the dispersion 

corresponds to the observed distribution of perception 
error for 96 travelers who indicated are familiar with 
the given route. 

3.2. Multi-Criteria Route Choice Model Estimation
This section discusses a logit path utility function 
that is calibrated considering travel time and 

as , in which  is the family-
income for person n, and c and t are travel cost and 
time, respectively. Minimizing the likelihood function, 
estimated values of  and  turned out to be -0.0891 
and -1.1594, respectively. A standard statistical 

(17)

(18)



159 International Journal of Transportation Engineering, 
Vol.1/ No.3/ Winter 2014

Milad Haghani, Zahra Shahhosseini, Amir Samimi, Hedayat. Z. Ashtyani

interval. The McFadden pseudo rho squared was 
obtained 17 percent at convergence. 

4. Numerical Examples
The proposed logit route choice models are applied in 
the pedagogical network of Nguyen and Dupuis [1984] 
with 13 nodes, 19 links, and 4 OD pairs (Figure 3). OD 
pairs of (1,2), (1,3), (4,2) and (4,3) have, respectively, 
travel demand of 400, 800, 600 and 200 units. The 
results are discussed separately for the univariate and 
multi-criteria route choice models.

4.1. Univariate Model
The univariate route choice model was applied for a 

 in which is travel time, 

and       , is utilized. The values 
of parameters        and       , however, are presented 

by and large similar to the deterministic assignment. 
Figure 4 illustrates this similarity in terms of link 

even question the primary purpose of the stochastic 

randomness in route choice decisions. 

Figure 2. Distribution pattern of travel time perception error data.

Figure 3. Test network [Nguyen and Dupuis, 1984]
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Table 1. Parameters of link volume-delay functions for test network
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is more sensitive to calibration of the dispersion 

To further illustration of this fact, a PCL model with a 
calibrated   is set as the comparison basis in Figure 5, 

model with calibrated  and also a PCL with typical . 

parameter makes more tangible changes compared to 

Figures 6 and 7 provide a graphical sensitivity analysis 

our illustrative network, respectively. Two models were 
selected as the basis for comparison: MNL model as 
the simplest model and PCL model as one of the most 
advanced models which appropriately addresses path 
correlation problem. Two primary achievements can be 

one can easily observe that the degree of sensitivity 

a precise enough fashion in planning. Second, as can 

equivalently, the variance of perception errors becomes 

do not. This fact indeed contradicts the proposition 
stated in some previous studies [Prashker and Bekhor, 
2000] claiming that for probabilistic models, as 

this statement is only valid for MNL model, and for 
the models other than MNL which are able to represent 
path overlapping is not true. For this class of models, 

-

similar as a network becomes more congested [Dagan-
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(a) MNL model.

(b) PCL model
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(a) MNL model

(b) PCL model.
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This argument is made using typical values for input 
calibration parameters. Therefore, we made a sensi-
tivity analysis to investigate the level of congestion at 
which SUE and DUE give rise to very similar results. 
The result is enlightening for determining a scope of 
SUE models. For this purpose, we designed some ex-
periments in which the vector of travel demand was 
multiplied by a factor of  to change the congestion 
level. As illustrated in Figure 8, DUE and SUE get sim-
ilar in congested networks, but the congestion level at 
which the two methods become quite similar is differ-
ent when the dispersion parameter is estimated. A high 
degree of similarity is shown having a typical value of 
one for , even for the base demand vector of our ex-
ample. While, DUE and SUE are yet different setting 

 and of     =3. Even for   =40, our experience re-
vealed that marginal differences still exist between the 
two approaches. Furthermore, PCL and DUE outputs 
are compared in Figure 9 for different levels of conges-

DUE are regressed versus PCL-SUE model. The values 

(R2

as     increases, the intercept becomes more statistically 

A general increase in R2, on the other hand, indicates 
an increase in similarity between SUE and DUE results 

in this area, however, is somewhat different than what 

their statement, one can conclude that even in mod-
erately congested networks, SUE and UE approaches 
both lead to quite similar results which in fact questions 
the need for resorting to SUE models and undertak-

however, is rather different and shows a considerable 
difference between UE and SUE even for highly con-
gested conditions. The source of this disagreement be-

the input parameter. 

4.2 Multi-Criteria Model
The multi-criteria route choice model requires income 
of the travelers, in addition to travel time and cost, to 
perform the assignment. To obtain this information, 

travelers are divided into four income groups (<5, 5-10, 

has an exponential distribution, assuming the average 

zone 1 and 4, respectively. 
-

chastic equilibrium algorithm, the steps of which are 

multi-criteria case and differentiating classes of in-
come. The adaptation of the algorithm has originally 
been made in this study. 
Step 0: Initialization:
i. Compute monetary path costs  ,                                                              

having path lengths , fuel price (FP), aver-
age rate of fuel consumption (FC), and path tolls,  

ii. Set each link’s travel times equal to fr

times , and compute initial path times  

.
iii. Compute representative utility of each path 
for each income group (i):

 iv. Perform a stochastic network loading to ob-

v. Compute: 

vi. Set counter  .

Step 1: Update:

ii. Update link travel times:  

iii. Update path travel times:  

iv. Update path utilities:  
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(a) Original demand :  

(b) Doubled demand :  

(c) Tripled demand :  

FIGURE 8 Comparison of UE and SUE for different congestion scenarios

r2=0.997 r2=0.804 

r2=0.911 r2=0.997 

r2=0.955 r2=0.999 

(a) Original demand : 

(b) Doubled demand : 

(c) Tripled demand : 

Figure 8. Comparison of UE and SUE for different congestion ocenarios
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(a) Confidence interval for intercept. 

(b) Confidence interval for slope 

(c) Coefficient of determination  
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Step 2: Direction Finding:
i. Compute path choice probabilities  
and perform a stochastic network loading to compute 

 
Step 3: Move:

-

Step 4: Convergence Check. 
i. Compute RMSE as a measure of convergence:

 

 then set the 

 and 

go to step 1.   and   are predetermined constants. 

on the estimated multi-criteria path utility. The multi-
criteria assignment is sensitive to travel cost of the 
travelers, and therefore, can predict effects of a wide 
range of pricing policies. For illustration purposes, we 

Rials, respectively, for links 5, 7 and 8. This pricing 

are compared to the Base condition, in Tables 4 and 5. 
Paired combinatorial logit model, for example, predicts 
a total travel time of 108,271 minutes, and a total vehi-
cle-kilometers of 59,733 (setting an average occupancy 
rate of 1.2) for the base condition. According to the 
PCL forecasts, total travel time and total vehicle-kilo-
meter is expected to improve by 1.63 and 0.2 percent 
respectively under the aforementioned pricing policy.

           * Base
           ** Tolled
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           * Base
           ** Tolled

5. Summary, Conclusions and Future Re-
search Directions 
5.1 Summary
A range of logit-type stochastic route choice models 

models are addressed to a possible extent, were dis-
cussed.
 A univariate and a multi-criteria logit path utility func-
tion was estimated based on experimental data and 
were applied to a stochastic logit-based TA model. 

a univariate route choice model was emphasized and 
a heuristic method was proposed to estimate this pa-
rameter. The proposed estimation method does not re-
quire choice data and hence, overcomes the problem of 
choice-set generation, the main challenge which makes 
estimation of route choice models highly challenging. 
The proposed estimation method, however, utilizes a 

-

gard the method as an approximate but practical ap-
proach of calibration.

5.2 Conclusion
This study was primarily set out to emphasize the im-
portance of estimation in probabilistic route choice 
modeling, which has received much less attention than 

of this study can be outlined as follows:

-
vealed that it would not lead to a considerably different 
result than DUE approach. Accordingly, application of 
this category of TA models in this way could not be 

our investigation showed that there is not a highly sig-

of MNL model, such as C-logit and PSL—which sim-
ply addresses path correlation without bringing about 
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the input parameter of SUE models on TA outcome is 
-

cally appealing choice models. As a result, in real plan-
ning it seems that analyst has to give more priority to 
precise estimation of the parameters than to selection 

calibration of the route utility based on the experimen-
tal data is more crucial than adapting advanced speci-

without precise calibration.
-

ysis, was also conducted showing that in spite of the 
former statements made in previous studies [Daganzo 

high level of congestion there is considerable differ-
ences between the prediction of UE and SUE models 

5.3. Future Research Directions
This study is one of the early efforts that estimates path 
utility based on experimental data, and has certain limi-
tations that deserve more investigation in future stud-
ies: 

explanatory variables, should a rich set of data and 

available.

repeated choices can simultaneously be accounted for 

-
ing the effects of supply management policies by in-

-
ditional approaches, the performance of network and 
the response of travelers to changes in the system, such 
as road pricing and new road designs, were conducted 
by overall measures such as total travel time. While 
these overall measures more evaluates the consequenc-
es from the supplier point of view than users, the CS 

measure can not only consider the problem from trave-
lers’ viewpoint, but also can discriminate between the 
effects of policies on different groups of users which 
can be crucial for equity considerations. Evaluation of 
consumer surplus variation due to changes in the traf-

variables models, and is open to further research. 

models in real-sized networks will introduce two fur-
ther issues to the problem: path generation and opti-
mization of the step-size in the convex combination 
procedure, which both were beyond the scope of this 

-
ture, these two problems also require more investiga-
tions.   
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