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Abstract 

The solutions used to solve bi-level congestion pricing problems are usually based on heuristic network 

optimization methods which may not be able to find the best solution for these type of problems. The application 

of meta-heuristic methods can be seen as viable alternative solutions but so far, it has not received enough attention 

by researchers in this field. Therefore, the objective of this research was to compare the performance of two meta-

heuristic algorithms namely, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), with each other 

and also with a conventional heuristic method in terms of degree of optimization, computation time and the level 

of imposed tolls. Hence, a bi-level congestion pricing problem formulation, for simultaneous optimization of toll 

locations and toll levels on a road network, using these two meta-heuristic methods, was developed. In the upper 

level of this bi-level problem, the objective was to maximize the variation in the Net Social Surplus (NSS) and in 

the lower level, the Frank-Wolfe user equilibrium method was used to assign traffic flow to the road network. 

PSO and GA techniques were used separately to determine the optimal toll locations and levels for a Sioux Falls 

network. The numerical results obtained for this network showed that GA and PSO demonstrated an almost similar 

performance in terms of variation in the NSS. However, the PSO technique showed 45% shorter run time and 

24% lower mean toll level and consequently, a better overall performance than GA technique. Nevertheless, the 

number and location of toll links determined by these two methods were identical. Both algorithms also 

demonstrated a much better overall performance in comparison with a conventional heuristic algorithm. The 

results indicates the capability and superiority of these methods as viable solutions for application in congestion 

pricing problems.  
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1. Introduction 

Many cities worldwide are facing issues such as 

traffic congestion, lack of adequate parking 

spaces, and increased fuel consumption and air 

pollution in long traffic jams. These issues are 

jeopardizing the physical and mental health of 

residents in these cities. Regulation of traffic 

flow to prevent traffic jams in downtown areas 

is long regarded as one of the major strategies 

in urban transportation management. One of the 

solutions proposed in this regard is the 

congestion pricing, which is basically a 

demand-oriented strategy developed as a 

substitute for traditional supply-oriented 

solutions. In demand-oriented solutions, traffic 

load on the network is controlled through 

reducing the demand for travel by private cars 

instead of constructing new highways or 

widening the existing roads (i.e. increasing the 

supply). In this context, congestion pricing 

concerns tolling the private cars when travelling 

within the congested areas during the busy 

hours of a day. 

The general principle of congestion pricing is to 

charge private car users for their role in traffic 

congestion and heavy burden they impose to the 

society as a result, e.g. increased delays, 

emissions, noise, and traffic accidents. When 

setting the toll level, it is very important to 

evaluate the drivers' willingness to pay for 

using their own private vehicles [Mirbaha et al, 

2013]. It should be remembered that a too low 

toll level may not meet the original objective of 

controlling the demand, and a too high toll level 

may result in public discontent and excessive 

pressure on the public transportation system. 

Congestion pricing was first introduced in 

Singapore in 1975. Later on, this solution was 

implemented in other major cities such as 

Bergen (1986), Oslo (1990), Trondheim 

(1991), London (2003) and Stockholm (2007). 

Most of the current congestion pricing systems, 

toll the cars and heavy goods vehicles seeking 

entry to the priced area (usually the downtown 

areas) during certain hours [Hensher, 2012]. 

Congestion pricing methods are divided into 

two categories namely, first best pricing 

methods and second best pricing methods. In 

developing these methods, the effectiveness of 

a pricing scheme is usually evaluated using 

appropriate criteria such as travel time and 

social surplus. In the first best pricing methods, 

users are charged for passing through any link 

of the road network. The improvement of social 

surplus through a first-best solution is an upper 

bound to the improvement that can be achieved 

by any second best pricing scheme. 

Nevertheless, there has been less attention to 

the first best pricing methods which can be 

attributed  to their inflexibility to impose any 

restriction on the pricing scheme, their 

technological and implementation limitations, 

their high operating costs and their low public 

acceptance [Yang and Zhang, 2003;  Yang and 

Huang, 2005].  In contrast, the second best 

pricing methods are usually favored as they 

would allow to impose a number of restrictions 

on the congestion pricing scheme, e.g. only a 

limited number of predetermined toll levels are 

used, only a subset of network links are tolled, 

only a limited range of toll levels are used or 

only a closed cordon area of the network is 

tolled. These methods would also allow to 

implement a combination of such restrictions 

[Ekstrom, 2008].  

Therefore, the majority of previous studies on 

the optimal congestion pricing schemes have 

concentrated on the second best pricing 

methods and especially on the schemes with 

pre-specified toll locations. In these studies, toll 

locations are already established and the 

remaining issue has been to solve the toll level 

setting problem [Yang and Huang, 2005; Yang 

and Lam, 1996; Verhoef et al, 1996; Marchand, 

1968; Liu and McDonald, 1999; Lindsey, and 

Verhoef, 2001; Verhoef, 2002]. The toll 

collection costs has also been disregarded in 

these studies. However, in real terms, there are 

costs associated with the setting up and the 

operation of toll collection systems. 

Incorporating these costs into the optimization 

framework allows us to not only maximize the 

social surplus, but also the difference between 

this surplus and toll collection costs (i.e. net 

social surplus).  

In a wider scope, this problem should be 

considered as a combination of toll location 

determination problem and toll level setting 

problem. Hence, the objective should be to 
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determine the optimal locations of toll 

collection links and their corresponding toll 

levels.  

The simultaneous optimization of combined 

toll location and toll level setting problem has 

only been considered in a few studies. In these 

studies, conventional network optimization 

methods based on iterative or trial and error 

methods have usually been used [Shepherd and 

Sumalee, 2004; Ekstrom, 2008; Ekstrom, 

2014]. For instance, the heuristic method 

proposed by [Ekstrom, 2008] was based on 

repeated solutions of an approximation to the 

combined toll location and level setting 

problem, with the objective to maximize net 

social surplus. Such approximation procedure 

requires examining numerous combinations of 

toll links even for small networks. At the end, 

these methods may only identify a local 

optimum which may not correspond to the best 

solution. [Ekstrom, 2008] observed that his 

proposed approximation approach may suggest 

unnecessary toll locations and the results can 

further be improved by their elimination.  

Hence, it is required to adopt a more effective 

method to examine possible link combinations 

and to identify a local or global optimum value 

for the objective function. This task can be 

performed more efficiently through the 

application of meta-heuristic methods such as 

Genetic Algorithm (GA) or Particle Swarm 

Optimization (PSO) techniques. As these 

techniques rely on the nature-inspired 

mechanisms to identify desired choices, it can 

be assumed they may yield solutions much 

closer to the global optimum. A number of 

studies have already used GA technique to 

solve toll network design problems using 

second-best pricing approach [Yang and Zhang, 

2003; Shepherd and Sumalee, 2004; Cree et al, 

1998]. But in these studies, GA has mainly been 

used either to locate the toll links or to set the 

toll level, and never for simultaneous 

optimization of both.  

More recently, [Fan, 2016] proposed a bi-level 

GA-based solution for the simultaneous 

optimization of tolling locations and toll levels 

in a multi-class network. The objective function 

for the upper level problem was set to minimize 

the travel time of the entire system and the 

lower problem was considered as a traditional 

user equilibrium problem. Two GA methods 

were used for solving this problem, one by 

defining separate chromosome structures for 

toll location and toll level setting, and another 

by defining a single chromosome structure for 

both. Assuming homogeneity of the road users, 

these two solution methods were then 

implemented on the Sioux Falls road network 

and their performance was compared. The 

results indicated that the solution based on a 

single chromosome structure performed more 

effectively than the other.  

In recent years, PSO technique has also 

successfully been used to solve various bi-level 

problems in other fields [Zhao and Gu, 2006; 

Kuoa and Huang, 2009; Ma and Wang, 2013; 

Zhong et al, 2016; Zaman et al, 2017]. PSO 

enjoys a lot of advantages, such as memory 

utilization, cooperation and information sharing 

between particles, high convergence rate, high 

flexibility in terms of avoiding local optima, 

ease of design and implementation.  

Reviewing the literature dedicated to this 

subject shows that the methods previously 

proposed to solve bi-level congestion pricing 

problem have rarely been based on a 

simultaneous toll location/level optimization 

approach. Most of these methods have been 

based on conventional network optimization 

heuristics methods and have rarely used meta-

heuristic methods such as GA for this purpose. 

Furthermore, no previous study was identified 

in which PSO method has been used for this 

purpose. Therefore, the objective of this 

research was to compare the performance of 

two meta-heuristic methods namely, GA and 

PSO, with each other and also with a 

conventional heuristic method in terms of 

degree of optimization, computation time and 

the level of imposed tolls.  

2. Formulation of Bi-level 

Problem 

The following notations are used in order to 

present the model formulation.  

Sets/indices: 
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a = link  

i = Origin-Destination (O-D) pair 

A = set of links such that a ∈ A 

I = set of O-D pairs such that i ∈ I 

Data/parameters: 

qi = travel demand between O-D pair i 

q = travel demand vector 

ca () = average travel cost on link a  

p = each route on traffic network corresponding 

to an O-D  

fp = traffic flow on route p  

Di
−1(qi) = Inverse travel demand function of O-

D pair i given qi 

Ti = total travel demand between O-D pair i 

Ai = car demand between O-D pair i in the no-

toll scenario  

Ki = public transportation demand between O-

D pair i in the no-toll scenario  

α = scale parameter for Gumbel probability 

distribution  

δp
a

 = a dummy that takes on the value of 1 if 

route p traverses link a, and 0 otherwise  

πi = the cost of traveling by car between O-D 

pair i  

πi
0 = the car travel cost in O-D pair i ∈ I in the 

no-toll scenario 

w = integral variable 

Decision Variables: 

τa = toll level on link a 

va = traffic flow on link a 

v = link flow vector 

In order to solve the bi-level problem under 

consideration, it is initially required to solve the 

lower level problem through using an 

appropriate traffic assignment method, e.g. 

Frank Wolfe’s user equilibrium algorithm to 

determine traffic loads on each network link. 

The outputs from the lower level problem is 

then used to solve the upper level problem as an 

optimization problem through which the tolled 

links and their corresponding toll levels are 

determined. On this basis, the following steps 

were defined and then coded in the MATLAB 

software accordingly. 

1. The first step was to solve the lower level 

problem, i.e. traffic assignment or the network 

loading. Using the Multi-Nominal Logit 

(MNL) for splitting public and private 

transportation modes, the combination of user 

equilibrium problem and mode choice problem 

can be expressed as Equation (1). 

min
q,v

G(q, v) = ∑ ∫ ca(w +
va

0a∈A

τa)dw − ∑ [πi
0qi +

qi

α
ln

Ai(Ti−qi)

Kiqi
+i∈I

Ti

α
ln(

Ti

Ti−qi
)]                                              (1) 

Subject to: 

∑ fp = qi,

p∈Πi

      ∀i ∈ I 

fp ≥ 0,      ∀i ∈ I,    ∀p ∈ Πi 

qi ≥ 0,      ∀i ∈ I 

va = ∑ ∑ fpδp
a

p∈Πii∈I

,      ∀a ∈ A 

Equation (1) is the pivot point version of the 

combined user equilibrium and Multinomial 

Logit (MNL) modal choice problem. The first 

component of this equation represents the travel 

costs sustained by drives, including any tolls. 

The second component of this equation 

represents the inverse demand function which 

is equal to the cost of travelling on routes with 

minimum travel cost or equilibrium routes. In 

the second component, by incorporating MNL 

mode choice model, mode choice behavior of 
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drivers is also considered. This equation was 

solved using the link-based Frank-Wolfe 

method which is one of the first and still 

commonly used methods to solve user 

equilibrium traffic assignment problem [Frank 

and Wolfe, 1956; Sheffi, 1984].  

By solving this equation, the optimal traffic 

flow rate (va ) and the optimal demand (qa) for 

any link of the road network (i.e. link a) were 

determined, and the Net Social Surplus (NSS) 

for the no-toll scenario (NSS°) was calculated 

using equations provided in step (5). 

2. The outputs of trip assignment model were 

used as inputs of GA and PSO algorithms. In 

this step, the optimal toll locations and levels 

were determined by GA and PSO algorithms 

using the objective function given in Equation 

(2). 

max
τ∈χ

F(v(τ), π̂(τ), τ) =
1

α
∑ Ti ln [

Ai

Ti
eα(πi

0−π̂i) +i∈I

Ki

Ti
] + ∑ va(τ)τa − ∑ Casign(τa)a∈Aa∈A                (2) 

Where Ca is the cost of toll collection on link a; 

 π̂i and πi
0  are the minimum cost of travel by 

private car users between each O-D pair in toll 

and no-toll scenarios, respectively. The third 

part of Equation (2) represents the toll operation 

cost. Function sign(τa) takes on the value of 1 

if link a is tolled, and 0 otherwise. 

Travel cost was estimated using quadratic cost 

Equation (3). 

ca(va) = Ta (1 + 0.15 (
va

Ka
)

4
)                       (3) 

Where Ta is the free flow travel cost on link a; 

Ka is the maximum capacity of link a. 

3. The toll vector was updated using the results 

of GA and PSO algorithms. The user 

equilibrium problem was re-solved and then 

traffic flow rate and traffic demand on each link 

was updated. The outputs were used to re-solve 

the upper level problem again and this process 

was repeated in successive iterations until the 

termination condition is met. 

4. Links with positive toll level were considered 

as tolled links and their toll rate was reported as 

optimal toll level. 

5. Improvement in NSS was calculated through 

the following steps. 

Social surplus was calculated from Equation 

(4). 

SS = CS + R                                                        (4) 

Where R denotes the total toll revenue, which 

is obtained by Equation (5). 

R = ∑ τavaa∈A                                                              (5) 

Net user benefit which refers to consumer 

surplus was defined as the difference between 

user benefit from user cost as expressed in 

Equation (6). 

CS = UB − UC                                                       (6) 

In the above equation, the user benefit is 

calculated from Equation (7) [Verhoef, 2002]. 

𝑈𝐵 = ∑ ∫ 𝐷𝑖
−1(𝑤)

𝑞𝑖

0
𝑑𝑤𝑖∈𝐼                                 (7) 

User costs refers to total cost of travel in the 

network, which consists of link costs plus the 

O-D pairs costs, which was obtained from 

Equation (8). 

UC = ∑ ĉa(va)vaa∈A = ∑
 

π̂ii∈I qi                    (8) 

As mentioned earlier, when the toll level setting 

problem is solved, it is common to ignore the 

operator cost and set the objective on the 

maximization of social surplus. But when the 

combination of toll locations and toll levels are 

simultaneously considered in these 

optimization problems, it is essential to 

incorporate the operator cost into the 

formulations as it would affect the number and 

location of tolled links [Ekstrom, 2008]. NSS 

can then be calculated using Equation (9). 

NSS = SS − OC                                        (9) 

Where OC is the toll collection costs also 

known as operator costs, which was calculated 

using Equation (10) proposed by [Sumalee, 

2004]. 
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OC = ∑ λaCaa∈A                                           (10) 

Where Ca is the toll collection cost on link a; λa 

takes on the value of 1 if link a is tolled, and 0 

otherwise. 

Instead of social surplus, its variation or Delta 

Social Surplus (∆SS), can also be used. ∆SS can 

then be calculated from Equation (11). 

∆SS = ∆CS + ∆R                                       (11) 

In this case, the objective will be to 

maximize the Delta Net Social 

Surplus(∆NSS). ∆NSS can be calculated 

from Equation (12). 

∆NSS = ∆SS − OC                                      (12) 

The summary of above steps involved to 

solve this bi-level problem is shown in 

flowchart of Figure 1. 

Figure 1. Summary of steps involved to solve the bi-level problem 

Solve Equation (1), calculate the flow on links and routes,  

Solve Equation (2) using GA and PSO algorithms and update the toll vector 

Use τn−1 to calculate NSSn−1 

Is stop condition 

satisfied? 

 

Assume: 

 n=1 and toll vector cells = 0 

 

Record NSSn−1 and traffic flow, n= n+1 

 

Yes 

Display final NSSn−1 , ∆NSSn−1, traffic flow and toll level vectors 

End 

No 
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3. Application of the Proposed 

Methodology and Results 

In this section, first the Sioux Falls traffic 

network used to examine the performance of 

methods under consideration is outlined. Then, 

two meta-heuristic methods namely, PSO and 

GA algorithms, and also a heuristic method 

proposed by [Ekstrom, 2008] that were used for 

the simultaneous optimization of tolling 

locations and toll levels are described.  Finally 

the results obtained from the application of 

these methods are presented.  

3.1 Traffic Network Model 

The traffic network used in this study to 

evaluate and demonstrate the performance of 

meta-heuristic methods is the Sioux Falls 

network. First introduced by [LeBlanc, 1975], 

this network has 24 nodes, 528 O-D pairs and 

76 links.  This network has been extensively 

used to demonstrate and evaluate solution 

methods proposed to resolve different network 

problems. [Ekstrom, 2008] and [Fan, 2016] in 

their studies used the same network parameters 

and the O-D matrix values as they were 

originally used by [LeBlanc, 1975]. In order to 

use the results of their studies to evaluate and 

compare the performance of GA and PSO 

algorithms proposed in this study, the same 

values were used in this study as well. In 

general, this network has a 24-hour traffic data, 

but similar to the [Ekstrom, 2008] studies, only 

the morning rush hour data was used and it was 

assumed to be one tenth of total daily traffic 

volume. Sioux Falls network is illustrated in 

Figure 2. 

3.2. Application of PSO Algorithm to 

Solve the Upper Level Problem  

Before using PSO algorithm, it was required to 

determine its parameters. For this purpose, the 

acceleration coefficients C1 and C2 were 

considered to be 2 and particle velocity was 

assumed to be random. The initial inertia 

weight, w, was assumed to be between 0.4 and 

0.9. Similar to the study carried out by 

[Ekstrom, 2008], the lower and upper bounds of 

toll levels were considered to be 0 and 20 

Swedish Krona (SEK) respectively. Each SEK 

is equivalent to 0.12 US dollar and 3650 IR 

Rials. In each iteration, W was updated using 

Equation (13). 

W = Wmax − iters ×
Wmax−Wmin

itersmax
                   (13) 

 

Figure 2. Sioux Falls traffic network 

Where 𝑖𝑡𝑒𝑟𝑠 is the current iteration number, 

Wmax is the maximum inertia weight of 

particles, Wmin is the minimum inertia weight 

of particles, and 𝑖𝑡𝑒𝑟𝑠𝑚𝑎𝑥 is the maximum 

number of iterations.  

The developed PSO algorithm was run on the 

Sioux Falls network. To facilitate the 

comparison of algorithm results with the results 

of heuristic method used by [Ekstrom, 2008], 

the cost of toll collection on all tolled links of 

the network was considered to be a constant rate 

of 1500 SEK/hour and Value of Time (VOT) 

was considered to be 1 SEK/minute. All values 

obtained from the algorithm are in SEK. Also, 

scale parameter of Gumbel distribution was 

assumed to be 0.5. 

After a test run and plotting the curve of NSS 

values against the number of iterations of PSO 

and Frank-Wolfe trip assignment algorithms, 

stop condition of both algorithms was set to 

maximum 30 iterations. This number of 

iterations was adopted as more iterations did 

not make any significant difference to the 
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results. For example, NSS values obtained 

during 30 iterations of PSO and 30 iterations of 

Frank-Wolfe algorithm are shown in Figure 3. 

In this figure, the curve labeled BEST 

represents the optimal solution of PSO 

algorithm and the curve labeled MEAN 

represents the mean value of solutions obtained 

from all particles in the search space. 

Figure 3. NSS values obtained during 30 

iterations of PSO and Frank-Wolfe algorithms. 

Finally selected tolled links and their 

corresponding toll levels obtained from PSO 

algorithm for Sioux Falls network are shown in 

Figure 4. 

 

Figure 4. Finally selected tolled links and their 

corresponding toll levels (in SEK) obtained from 

PSO algorithm 

3.2 Application of GA Algorithm to Solve 

the Upper Level Problem  

Similar to the PSO algorithm, it was initially 

required to set the parameters of GA algorithm. 

Some of the adopted procedures and parameter 

settings were based on the findings of a similar 

research carried out by [Fan, 2016]. For 

instance, in the GA based solution procedure, a 

single chromosome structure was applied for 

both toll locations and their corresponding toll 

levels, i.e. the population was initialized after 

the chromosomes for both toll levels and 

locations were combined. Furthermore, the 

following parameters were similarly used in 

this research: maximum number of generation, 

1000; population size, 64; and mutation 

probability, 0.05. In both researches, Frank-

Wolfe user equilibrium method was applied to 

solve lower-level problem. However, no 

limitation on the maximum tolled links was 

assumed in this research, whereas a maximum 

limit of 10 tolled link was applied by [Fan, 

2016] in his research. Furthermore, the 

objective function for the upper level problem 

was set to the maximization of  NSS in this 

research whereas, [Fan, 2016] used the 

minimization of total system travel time as the 

upper level objective function. 

In the GA algorithm, the number of parent 

chromosomes was calculated using Equation 

(14). 

nc = 2 × round (pc ×
nPop

2
)                         (14) 

Where pc is the crossover probability and nPop 

is the number of chromosomes. 

The developed GA was run on the Sioux Falls 

network. Similar to the PSO algorithm, the cost 

of toll collection on all tolled links of the 

network was considered to be 1500 SEK/hour, 

VOT was considered to be 1 SEK/minute, and 

scale parameter of Gumbel distribution was 

assumed to be 0.5. 

Using test runs and plotting the curve of NSS 

values against the number of iterations of GA 

and Frank-Wolfe algorithms, stop conditions 

were set to maximum 50 iterations for GA 

algorithm and maximum 35 iterations for 

Iteration Number 

N
S

S
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Frank-Wolfe algorithm. This was due to the fact 

that further iterations did not make any 

significant difference in the results.  

Figure 5. NSS values obtained during 50 

iterations of GA and 35 iterations of Frank-

Wolfe algorithm 

For example, NSS values obtained during 50 

iterations of GA and 35 iterations of Frank-

Wolfe algorithm is illustrated in Figure 5. In 

this figure, the curve labeled BEST represents 

the optimal solution of the GA algorithm and 

the curve labeled MEAN represents the mean 

value of solutions obtained from all 

chromosomes. 

Figure 6 shows the finally selected toll links and 

their corresponding toll levels obtained from 

GA for Sioux Falls network. 

Toll levels and locations obtained with GA and 

PSO are given in Table 1 

 

Figure 6. Finally selected toll links and their toll 

levels (in SEK) obtained from GA 

 

Table 1. Tolled links and their toll levels 

Toll level based on PSO 

(SEK) 

Toll level based on GA 

(SEK) 
 Tolled link 

5.5 7 1-2 

6.2 5.2 1-3 

13.1 11.9 11-14 

9.5 8.1 12-13 

11 17.9 13-12 

1.1 8.1 16-17 

10.5 20 16-18 

Iteration Number 

N
S

S
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13.7 17.3 19-17 

14.1 12 23-14 

7 17.2 24-21 

9.3 13.6 13-24 

Table 2. A comparison of the performance of meta-heuristic and heuristic methods  

Applied 

algorithm 

Algorithm 

run time (sec) 

No. of tolled 

links 

Mean toll level 

(SEK) 

ΔNSS 

Value 

% relative 

improvement 

in 
comparison 

with Ekstrom 

method 

PSO 11,078 11 9.2 79,953 9 

GA 20,314 11 12.1 81,801 11 

Heuristic 

method 

[Ekstrom, 

2008] 

Not available 27 11.6 72,919 - 

Table 3. Comparison of the results of GA/PSO algorithms in this study and the GA developed by [Fan, 

2016] 

NSS  No. of tolled 

links 
Algorithm 

run time (sec) 
Meta-heuristic 

algorithm 

1,107,351 11 11,078 PSO 

1,125,074 11 20,314 GA 

1,024,412 10 Not 

available 
GA developed by [Fan, 

2016] 

3.3 Comparison of Performance 

For the studied problem, ΔNSS values obtained 

from two examined meta-heuristic methods 

namely, PSO and GA methods were 79953 and 

81801 respectively. This value for the heuristic 
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method used by [Ekstrom, 2008] under similar 

conditions was 72919. 

Thus, it can be concluded that both meta-

heuristic algorithms have outperformed the 

heuristic algorithm. A comparison of the 

performance of these three methods in terms of 

measures used for comparison namely, 

algorithm run time, number of tolled links, 

mean toll level and ΔNSS is presented in Table 

2. 

The results of these two meta-heuristic 

algorithms in comparison with the results of 

outperformed GA model developed by [Fan, 

2016] is presented in Table 3. Note that in the 

study carried out by [Fan, 2016], the maximum 

number of toll links was intentionally limited to 

10 links. 

The results presented in Table 2 and Table 3 

show that both GA and PSO methods, while 

requiring a much lower number of links than a 

well-known heuristic method, have resulted in 

higher net social surplus for the network users. 

These results demonstrate the superiority of GA 

and PSO meta-heuristic methods over 

conventional trial and error approximation 

algorithms in this respect. 

As indicated in Table 3, NSS values obtained 

from the GA method developed in this study 

and the one developed by [Fan, 2016] are close 

to each other. This similarity confirms the 

validity of developed GA method in this study 

and again demonstrates the superiority of meta-

heuristic algorithms over heuristic algorithms, 

when used to solve bi-level problems. 

4. Conclusions  

In this research, a bi-level methodology was 

used for the simultaneous optimal 

determination of tolled links and their 

corresponding toll levels. Through an iterative 

process, Equation (1) based on the Frank-Wolfe 

user equilibrium method was used in lower 

level to assign traffic on a well-known traffic 

network namely, Sioux Falls network. In higher 

level, the outputs from the Frank-Wolfe 

algorithm (i.e. traffic flow on each link of the 

network) were then used as inputs to two 

individual meta-heuristics methods namely, 

GA and PSO. This iterative process was 

repeated until the optimal value for the 

objective function (Equation 2) was reached 

and the final tolled links and their 

corresponding toll levels were identified.  The 

results obtained from these two methods were 

compared with each other and also compared 

with the results obtained from a heuristic 

method used by [Ekstrom, 2008] in similar 

conditions.  The following conclusions can be 

drawn from theses comparisons. 

1) Both GA and PSO methods demonstrated 

an almost similar performance in terms of 

ΔNSS. This indicates that these two 

methods have similar capability in 

acquiring an optimal value for the same 

objective function. 

2) Algorithm run time is an important 

parameter in such optimization problems, 

especially when large networks are 

involved. It could indicate the efficiency of 

applied method in solving the problem. The 

results presented in Table 2 and Table 3 

indicate that the PSO algorithm developed 

in this study achieved the optimum solution 

in about 55% run time that was required for 

the GA method under similar conditions. 

3) Both meta-heuristic algorithms developed 

in this study selected 11 similar tolled links. 

Thus, in this respect, there was no 

difference between their performances. 

4) A lower mean toll level obtained by an 

algorithm may indicate an apparent better 

social surplus for the network users and 

thereby capture a better public acceptance. 

Therefore, one can argue that from the 

users’ perspective, an algorithm that 

provides a lower toll level has a better 

performance. Thus, in this respect, it can be 

claimed that the PSO method with mean 

toll level of 9.2 SEK has produced a better 

performance than the GA method with 

mean toll level of 12.1 SEK. 

Future studies are recommended to use 

more advanced logit models, to introduce 

multiclass users, to assign variable VOT for 

users, to incorporate the social justice 

criteria into the congestion pricing model 
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and to apply proposed methodology for real 

traffic networks. 
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