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Abstract 

This paper aims to study the locomotive routing problem (LRP) which is one of the most important 

problems in railroad scheduling in view of involving expensive assets and high cost of operating 

locomotives. This problem is assigning a fleet of locomotives to a network of trains to provide sufficient 

power to pull them from their origins to destinations by satisfying a rich set of operational constraints 

and minimizing the total operational cost. This problem is the special application of vehicle scheduling 

and it is modeled by using the vehicle routing problem with time windows (VRPTW) to optimal 

assignment of locomotives to assembled trains. Almost all of the prior models were deterministic and 

an important issue, widely ignored in prior research in locomotive optimization, is the presence of 

significant sources of uncertainty in transit times, travel times and changes to the train schedule. 

Therefore, in this paper unlike most of the work where all the times are deterministic, uncertainty in 

travel time is considered. Because travel times in reality fluctuate due to a variety of factors and its 

understanding and management in transportation networks is very important. The concepts of fuzzy sets 

and fuzzy control systems are considered to model the uncertainty in travel times. Besides, a genetic 

algorithm (GA) with various heuristics is proposed to tackle the proposed model and its performance is 

evaluated in different steps on various test problems generalized from a set of instances in the literature. 

The computational experiments on data sets illustrate the efficiency and effectiveness of the proposed 

approach.  
 

Keywords: Locomotive Routing Problem, Vehicle Routing and Scheduling, Fuzzy Travel Time, 

Genetic Algorithm. 
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1. Introduction 

Locomotive routing problem (LRP) is one of 

the most important problems in railroad 

planning in view of involving expensive assets 

and high cost of operating locomotives. A large 

railroad may have billions invested in their fleet 

of locomotives. Too many locomotives mean 

that hundreds of millions are invested in 

equipment that is not yielding a return. Given 

the size of the investment, railroads have tried 

for decades to tap the power of optimization 

tools to manage their fleets more effectively 

[Powell et al. 2012]. Therefore Railroads face 

the challenge of determining the right fleet size 

and mix, as well as operating the fleet in an 

efficient way [Bouzaiene-Ayari et al. 2014]. In 

the literature review this problem has been 

reviewed under following topics as mostly 

similar concepts: 

 Locomotive Assignment Problem 

(LAP) 

 Locomotive Routing Problem (LRP) 

 Locomotive scheduling problem 

 locomotive Planning Problem (LPP) 

The position of this problem in the scheduled 

railroads is illustrated in Figure 1. [Yaghini and 

Lessan, 2010] where, the planning stage is 

divided into strategic, tactical and operational 

horizon. These stages are in accordance with the 

length of the respective planning horizon and 

the temporal impact and relevance of the 

decision. In strategic planning, a variety of 

strategic planning studies for freight & 

passenger transportation and regarding to 

rolling stocks the objective followed is usually 

to minimize the required fleet size. But the 

locomotive routing problem (LRP) mainly 

discussed at the tactical and operational levels 

where, the available rolling stock is given and 

one usually wants to minimize the costs 

incurred by light running. In the operational 

planning, the activities are planned in the short 

term and it is much more sensitive to errors in 

either the train plan or the locomotive snapshot. 

The train schedule should be given as an input 

of locomotive assignment problem and then a 

locomotive routing problem should be solved. 

If the train schedule is affected by delays and 

disruptions events, the dynamic LAP should be 

considered and the model should be re-

optimized based on the new situations. In this 

paper it is tried to consider delays or disruptions 

events in another point of view and by using the 

uncertainty travel times. It could be achieved by 

the records and historical data of a railroad 

companies and the concept fuzzy sets and fuzzy 

control systems. Every day many railroad 

companies assign thousands of locomotives to 

thousands of trains and every year they invest 

considerable cost to manage and operate the 

locomotives according to a properly assignment 

plan. Due to the size of real-life problems, even 

a small percentage improvement toward a better 

efficiency in the use of locomotives, can lead to 

significant economic savings. It is also 

important for countries where their national 

railroad proceeds toward a privatization and 

they pay more and more attention on operating 

cost, punctuality and performance and 

customers’ satisfaction. So find a way to design 

a proper locomotives routing policy can be an 

important decision in railroad companies and it 

has attracted considerable attention from 

academics, consultants, and operations research 

groups within the railroads [Bouzaiene-Ayari et 

al. 2014]. Considering the Reducing of 

deadhead movement time of locomotives, 

waiting time to receive a locomotive and their 

associated costs is one of the important issues in 

planning, routing and assignment of 

locomotives. This issue determines the 

importance of LRP especially in uncertain 

conditions when there are limitations in fleet 

size (locomotives), costs of purchasing and 

adding new locomotives to the network, limited 

efficiency in utilization and etc. [Yaghini and 

Lessan, 2010]. Therefore, a growing interest for 

using optimization techniques in railroad 

problems has appeared in the operation research 

literature (see e.g. [Yaghini, Sharifian and 

Akhavan, 2012; Piu and Speranza, 2014; 

Pashchenko et al. 2015 and Piu et al. 2015]). 

Unfortunately, the Locomotive Routing 

Problem (LRP) is a very complex from a 

mathematical modeling and (even more) 

computational point of view, because of its 

detail richness and its size in real-life 

applications. The most of the studies formulated 

the LPP as a mixed-integer programming 

problem that is quite complex and accordingly, 

their solution technique is time consuming 

[Vaidyanathan et al. 2008 and Bouzaiene-Ayari 

et al. 2014].  

http://www.sciencedirect.com/science/article/pii/S1877050915024540
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Figure 1. Planning stages in Railroad scheduling 

 

The locomotive problem is not just a large 

integer program, it is a hard integer program 

that involves difficult features [Bouzaiene-

Ayari et al. 2014].But this problem could be 

generally modeled as the vehicle scheduling 

problem to find the locomotive routing & 

assigning plan and improve the computational 

effort [Ghoseiri and Ghannadpour, 2009; 

Ghoseiri and Ghannadpour, 2010; Teichmann 

et al. 2015; Torres, 2003]. So this paper in 

continuation of previous researches tries to 

consider the locomotive routing problem as 

special application of vehicle scheduling and 

model it by using the vehicle routing problem 

with time windows (VRPTW) to find the 

optimal assignment of locomotives to 

assembled trains.  

Almost all of the prior models were 

deterministic and an important issue, widely 

ignored in prior research in locomotive 

optimization, is the presence of significant 

sources of uncertainty in transit times, travel  

 

times and changes to the train schedule 

[Bouzaiene-Ayari et al. 2014]. So the plans 

being used do not satisfy real conditions and 

may has a negative impact on operations 

[Vaidyanathan et al. 2008]. 

Powell et al. [Powell et al. 2012] studied 

different issues and types of uncertainty that are 

widely discussed but rarely solved as follows: 

 Dynamic schedule changes including 

uncertainty in transit times, travel times 

and changes to the train schedule: 

according to Figure 1, the train 

schedule is as an input of locomotive 

routing problem and any delays and 

disruptions events in train scheduling 

(or adding/dropping trains to/from the 

schedule) have major effects on 

planning and locomotive routing 

problem.   
 Transit time delays: these can be as 

long as six to 12 hours for the shorter 

movements of an Eastern railroad, to 

Strategic 

Tactical 

Operational 

Strategic Planning for 

Freight & Passenger 

Transportation 

Railroad Blocking 

Problem and Train 

Formation Problem 

Train Scheduling 

Problem 

Locomotive Routing 

Problem 
Crew Scheduling 

Problem 

Empty Fright Car 

Distribution Problem 

 

Operational 

Locomotive Routing 

Problem 

 Operational Crew 

Scheduling Problem 

Operational Empty 

Fright Car 

Distribution Problem 

 

Network Planning 

Station Control Traffic Control 



 
The Special Application of Vehicle Routing Problem with Uncertainty Travel Times… 

 

International Journal of Transportation Engineering,   122 
Vol. 5/ No. 2/ Autumn 2017 

 

more than a day for the long 

movements of the western railroads. 

This issue mainly includes deadhead 

locomotive movements which should 

properly managed in order to have 

available locomotive in the right time 

for attaching to the train; Therefore, 

since the train traffic schedule is an 

uncertain concept, this is uncertain too. 

 Shop delays: maintenance managers 

will provide estimates of when a 

locomotive will be ready to leave a 

shop, but these are just estimates  

 Equipment failures: locomotives may 

fail unexpectedly, and this represents 

an additional source of uncertainty. 

Therefore, in this paper unlike most of the work 

where all the times are deterministic, 

uncertainty in travel times is considered. 

Because travel times in reality fluctuate due to 

a variety of factors and its understanding and 

management in transportation networks is very 

important. The concepts of fuzzy sets and fuzzy 

control systems are considered to model the 

uncertainty in travel times. 

Various locomotive scheduling models have 

been appeared in the literature. The papers by 

Cordeau et al. [Cordeau, Toth and Vigo, 1998] 

and Piu & Speranza [Piu and Speranza, 2014] 

present an excellent survey of the existing loco-

motive planning models and algorithms for the 

locomotive planning problem. There are two 

kinds of locomotive planning models: Single 

and Multiple ones. Single locomotive planning 

models assume that there is only one type of 

locomotive available for the assignment. These 

models can be formulated as minimum cost 

flow problems with side constraints [Kasalica, 

Mandić and Vukadinović, 2013]. Some papers 

on single locomotive planning models are due 

to Forbes et al. [Forbes, Holt and Walts, 1991], 

Booler [Booler, 1980], and Fischetti and Toth 

[Fischetti, Toth, 1997]. Forbes et al. [Forbes, 

Holt and Walts, 1991] addressed a version of 

the problem where a single locomotive must be 

assigned to each train, no deadhead is allowed, 

and no maintenance requirements are taken into 

account. Single locomotive planning models are 

better suited for some European railroads rather 

than North American railroads since most North 

American railroads assign multiple locomotive 

types to trains.  

Multiple locomotive planning models have 

been studied in [Florian et al. 1976; Cordeau et 

al. 2001; Rouillon, Desaulniers, and Soumis, 

2006; Ziarati, Chizari and Mohammadi 

Nezhads, 2005]. Florian et al. [Florian et al. 

1976] introduced an integer programming 

model based on a multi-commodity network for 

the case where several locomotives can be 

assigned to each train. Ziarati et al. [Ziarati, 

Chizari and Mohammadi Nezhads, 2005], 

solved the locomotive assignment model using 

train delays and proposed an evolutionary 

approach to solve the cyclic locomotive 

assignment planning problem. Regarding to 

multiple locomotive planning models, Ahuja et 

al. [Ahuja et al. 2005] presented the real-life 

locomotive scheduling faced by CSX 

transportation, a major US railroad company. 

They formulated the locomotive planning 

problem as a mixed-integer programming 

problem and solved it using techniques from 

Very Large Scale Neighborhood Search 

(VLSN), linear programming-based relaxation 

heuristics, and integer programming. Vaidya-

nathan et al. [Vaidyanathan et al. 2008] 

extended this approach to several dimensions 

by adding new constraints to the planning 

problem required by railroads and by 

developing additional formulations namely 

consist formulation and hybrid formulation 

necessary to transfer solutions of the models to 

practice. In this area, the robust optimization 

methods to solve the locomotive planning 

problem (LPP) have been developed in 

[Vaidyanathan, Ahuja, and Orlin, 2008]. In this 

paper two major sets of constraints were 

considered as locomotive fueling and 

locomotive servicing constraints. first 

constraints group requires visiting a fueling 

station at least once for every F miles of travel, 

and the second group requires visiting a service 

station at least once for every S miles of travel. 

This problem was formulated as an integer 

programming problem on a suitably constructed 

space-time network and it was shown that this 

problem is NP-Complete. Recently an extended 

locomotive assignment problem has been 

modeled by Teichmann et al. [Teichmann et al. 

2015] where, a transport operator can use 

different classes of the locomotives to serve 

individual connections, some connections must 

be served by a predefined locomotive class, and 
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the locomotives can be allocated to several 

depots at the beginning.  

As mentioned earlier, the considered LAP in 

this paper is modeled by the vehicle routing 

problem with time windows (VRPTW) as one 

of the most important and widely studied 

combinatorial optimization problems. This 

problem seeks to determine the optimal number 

of routes and the optimal sequence of customers 

(from a set of geographically dispersed 

locations that pose a daily demand for 

deliveries) visited by each vehicle, taking into 

account constraints imposed by the vehicle 

capacity, service times and time windows, and 

defined by the earliest and latest feasible 

delivery time. The literature of the VRPTW, 

due to its inherent complexities and usefulness 

in real life is rich in different solution 

approaches. Different types of heuristic 

methodologies, which seek approximate 

solutions in polynomial time instead of exact 

solutions with an intolerably high cost, are 

available in the literature of the VRPTW. In 

addition, it is shown that heuristics based on 

decomposition techniques (e.g., column 

generation and Lagrangian relaxation) may 

provide very good quality solutions when 

sufficient computational time is available 

[Pepin et al. 2009; Qmasari, Hosseini Motlagh 

and Jokar, 2017; Samani and Hosseini-

Motlagh, 2017]. Thus, various heuristic 

approaches have been developed, ranging from 

local search methods to methods based on 

mathematical programming decomposition 

techniques and meta-heuristics. Applying 

different meta-heuristics to solve the VRPTW 

can be extensively found in the literature and 

there are many papers used evolutionary 

algorithms [Chiang and Hsu, 2014; Dhahri, Zidi 

and Ghedira, 2014; Ghannadpour, Noori and 

Tavakkoli-Moghaddam, 2014]. In addition the 

basic features of each method and experimental 

results for the benchmark test problems have 

been presented and analyzed. Other very good 

techniques and applications of the VRPTW and 

its developments can be found in [Majidi, 

Hosseini Motlagh, Ignatius, 2017; Hosseini 

Motlagh et al. 2017; Hiermann et al. 2016; 

Miranda and Conceição, 2016]. 

The remaining parts of paper are organized as 

follows. Section 2 defines the locomotive 

assignment problem with uncertainty travel 

times. Section 3 introduces the hybrid genetic 

search algorithm to solve the problem. Section 

4 discusses the model validation and results and 

Section 5 provides the concluding remarks. 

2. Locomotive Routing Problem 

with Uncertainty Travel Times 

As mentioned earlier, the proposed locomotive 

routing problem (LRP) is considered as a 

special application of vehicle scheduling and 

modeled using the vehicle routing problem with 

time windows (VRPTW) to optimal assignment 

of locomotives to assembled trains. In this 

model the trains act as customers of a VRPTW 

that should be serviced in their time windows 

and the locomotives are equivalent to vehicles. 

Moreover, this problem generally includes a set 

of homogeneous locomotives, a set of depots 

where locomotives are initially located, and a 

set of pre-scheduled trains (Ci) which their 

origins and destinations (Oi, Di) are known 

during the T-days planning horizon. The 

distance (or travel time) between origin and 

destination of each train is corresponds the 

service time (fi) of each customer in VRPTW 

and the distance (or travel time) between two 

trains Ci and Cj  is the distance (travel time) 

between the destination node of train i (Di) and 

the origin node of train j (Oi). Figure 2 

illustrates the locomotive routing problem as 

VRPTW. In this figure 𝑑𝑂𝑖𝐷𝑖
is the service time 

of train (i) and 𝑡𝐷𝑖𝑂𝑗
is the travel time required 

to dispatch a locomotive (without train) from 

destination node of train (i) to origin node of 

train (j) and it is named deadhead (inactive) 

movement. In other word, this locomotive has 

been assigned to train (i) to haul it to its 

destination Di and after that it is dispatched to 

origin node of train (j) to provide sufficient 

power for pulling. In this case the locomotives 

are not attached to a train and it just need to be 

moved from on station to another. Deadhead 

movements are the input of model and they 

should be calculated for each pair of trains 

before. For calculation, the standard scheduling 

model [Higgins and Kozan, 1997] which 

consider the limitations of blocks, positions and 

destinations of the stations is used. The right 

hand side of this figure shows the trains 

schedule graph resulted from train scheduling 

problem and according to Figure 1 should be 
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given as another input of locomotive routing 

problem to identify the origins, destinations and 

time windows of trains [𝑒𝑖 , 𝑙𝑖]. So, all the 

operational limits as the positions of the 

stations, stationary stops, prayer times stops, 

single and double tracks, and etc. have been 

carefully considered. The time windows 

assigned to each train is one the most important 

constraints where the trains must be serviced 

within their time windows and the locomotives 

should be assigned to pull them on time. The 

time windows width could be varied for trains 

and it is according to punctuality and operating 

class of railroads. If each locomotive k arrives 

to pull each train (i) before the earliest time of 

its service initiation (𝑒𝑖), it is incurred the 

waiting time and it is assumed the delay in 

service is not allowed. Eventually, Figure 3 is a 

typical output of the defined problem and for 

more details about the classical problem see 

[Ghoseiri and Ghannadpour, 2010]. According 

to this figure each locomotive starts its journey 

from a depot and reaches to the origin of a train 

and hauls the train to its destination. Afterward, 

it is decided for the locomotive whether should 

be returned to its home depot or be dispatched 

to the origin of another train. The factor which 

forces the locomotives to return to its home 

depot is the maximum allowable operating time. 

In this regards the total travelled time of each 

locomotive should be less than the pre-defined 

maximum operation time. Finally, it is tried to 

design the proper routing and assignment policy 

that in which the total travelled time of 

locomotives is minimized and following 

constraints are satisfied: 

 Hard Time windows of trains should be 

observed. 

 Each train is served exactly once by one 

locomotive 

 Each locomotive is starting from depot 

and ending at the same depot. 

 Maximum allowable travel times and 

operation time should be observed for 

each locomotive  

Moreover, the most important assumptions of 

the proposed model are as follows:  

 Total travel time is considered as the 

goal while the main purpose of this type 

of issue is cost reduction and it could be 

considered a part of this objective 

function. 

 The homogeneous VRPTW is assumed 

to be considered and so the locomotives 

of the same type are used for planning 

 The model tries to find the routes with shortest 

travel time. 

 

 
 

Figure 2. VRPTW & locomotive Routing 
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Figure 3. Typical Output for the Locomotive Routing Problem 

 

As mentioned earlier, in this paper unlike most 

of the work where all the times are 

deterministic, uncertainty in travel time is 

considered. Because travel times in reality 

fluctuate due to a variety of factors and its 

understanding and management in 

transportation networks is very important. This 

parameter can be modeled by the probability 

theory and based on the historical data as well 

as real times on railway networks. The 

probability theory can be used when the 

representative historical data are available. In 

contrast, fuzzy sets do not require such 

assumptions and can be used with little 

knowledge about the historical data. They 

express intuitive knowledge rather than exact 

uncertainty distribution. Moreover, the use of 

fuzzy sets is simple and naturally an extended 

version of arithmetic on real numbers. For these 

reasons, the fuzzy numbers are used as the 

representation of these uncertain values. So this 

value is modeled as triangular fuzzy numbers 

(𝑥, 𝑥∗, 𝑥̅) where value 𝑥∗ (one-element core) 

represents knowledge of type “travel time is 

around 𝑥∗” and support [𝑥, 𝑥] models statement 

“travel time lays between 𝑥 and 𝑥”. The 

uncertainty travel times naturally is propagated 

to arrival times of locomotives to each train 

(𝑎𝑡𝑖) and start of service times (𝑡𝑖) or start time 

of pulling trains to their destinations. When the 

fuzzy travel time is considered, these 

parameters need to be modified to 𝑡̃𝑖 and 𝑎𝑡̃𝑖. 

Therefore the possible arrival time of each 

locomotive to train i is as follows: 

𝑎𝑡̃𝑖 = 𝑡̃𝑖−1 ⊕ 𝑡̃𝑂𝑖−1𝐷𝑖−1
⊕ 𝑡̃𝐷𝑖−1𝑂𝑖

 (1) 

Where 𝑡̃𝑂𝑖−1𝐷𝑖−1
is the time required to pull train 

i to its destination and  𝑡̃𝐷𝑖−1𝑂𝑖
is the fuzzy travel 

time between trains 𝑖 − 1 and 𝑖. Moreover, the 

waiting time imposed on each locomotive when 

it arrives to each train (𝑖) is 𝑤̃𝑖  = 𝑡̃𝑖  − 𝑎𝑡̃𝑖. 

Therefore, the most important point to consider 

these parameters, is relevant to calculate the 

service start time (𝑡̃𝑖) based on the uncertainty 

travel times and locomotives' arrival times (𝑎𝑡̃𝑖) 

which is discussed in details at the next section. 

3. Solution Procedure 

The proposed model is solved by an 

evolutionary method based on genetic 

algorithm. Genetic algorithm is a class of 

adaptive heuristics based on the drawing 

concept of evaluation – “survival of the fitness”, 

and it has been developed by J.Holland 

[Holland, 1975] at the University of Michigan 

in 1975. The using Hybrid-GA is designed as 

follow.  

3.1 Chromosome Representation 

A solution to the problem is represented by an 

integer string of length N, where N is the 

number of customers which need to be served. 

All routes are encoded together, with no special 

route termination characters in between; 

Depot 

Planned Route of Trains 

Depot for Locating of Locomotives Depot 
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chromosomes are decoded back into routes 

based on the feasibility conditions namely 

maximum allowable operating time and 

servicing without delay time.  

3.2 Fuzzy Logic for Uncertainty Travel 

Time 

As mentioned before, the service start time at 

each origin point of train i (start time for pulling 

train i to its destination) cannot start before the 

earliest start time (𝑒𝑖) and it is also uncertain 

because it is directly related to uncertainty 

travel times. After beginning of 𝑒𝑖, service can 

be started and there is no possibility to start 

service before 𝑒𝑖 even if the locomotive is 

already there. Moreover, this paper uses the 

hard time windows and in this case the delay in 

service is not allowed and each locomotive must 

be assigned to train (i) before latest service time 

(𝑙𝑖). So the service start time on train i (𝑡𝑖̃) is 

more depended to earliest service time (𝑒𝑖), 

latest service time (𝑙𝑖) and the possible arrival 

time (𝑎𝑡𝑖̃). In this regard, the value of 𝑡𝑖̃ can be 

calculated based on four different relation 

between 𝑒𝑖, 𝑙𝑖 and 𝑎𝑡𝑖̃ as 𝑚𝑎𝑥{𝑎𝑡𝑖 ̃ , 𝑒𝑖} and 

𝑚𝑖𝑛{𝑎𝑡𝑖 ̃ , 𝑙𝑖}. Figure 4 illustrates some possible 

relationships as an example.  In this figure, the 

dashed lines are the approximation made to 

adjust the fuzzy number to triangular fuzzy 

representation..

 

 

Figure 4. Service start time based on the arrival time, earliest and latest start time 
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The first case of this figure identifies the service 

start time when all possible arrival time is 

before the beginning of time window. In the 

second case, the possible arrival is before and 

after the earliest start time; however, the modal 

value is before it. The third case is similar the 

previous case; however, the modal value is 

within the time window. In the last case, all 

possible arrival time occur within the time 

window and it is considered as the service start 

time.    

Therefore, according to estimated service start 

time for each train and the fuzzy travel time to 

next one the possible arrival time of other trains 

is approximated and it could be continued up to 

end of a route. One important factor to force the 

locomotives to return to its home depot is the 

maximum allowable operating time along each 

route. In this regards the total travelled time of 

each locomotive which is equivalent to the 

length of its travelled route, should be less than 

the pre-defined maximum operation time. This 

concept is tackled by the concept of fuzzy 

control systems and discussed in the next 

section 

3.3 Fuzzy control systems for length of 

tours  

As mentioned earlier, another important point 

considered here is the maximum allowable 

travel time of locomotives that forces them to 

return to depot. This feasibility condition is 

easily controlled for crisp travel times and 

detailed investigation is needed when the fuzzy 

travel time is used. According to previous 

sections the uncertainty travel times have been 

modeled by fuzzy travel times as triangular 

fuzzy number and clearly, the total travelled 

time of locomotives is a triangular fuzzy 

number as well. So, when the maximum 

allowable travel time of vehicles is denoted by 

R, the available time of each locomotive k after 

giving services to n trains (𝐴𝑇̃𝑛
𝑘) is as follows 

where 𝑇𝑂̃𝑛
𝑘 is the total travelled time by 

locomotive k after serving the nth train. 

𝐴𝑇̃𝑛
𝑘 = 𝑅 ⊖ 𝑇𝑂̃𝑛

𝑘 (2) 

𝑇𝑂̃𝑛
𝑘 = 𝑡̃𝑛−1  ⊕ 𝑡̃𝑂𝑛−1𝐷𝑛−1

⊕ 𝑡̃𝐷𝑛−1𝑂𝑛
 (3) 

  

It is clear that the “strength” of preference for 

this locomotive to serve the next train after 

serving n trains depends on available time 𝐴𝑇̃𝑛
𝑘. 

This preference can be “LOW”, “MEDIUM” or 

“HIGH” and the preference index is denoted by 

𝑝𝑛 ∈ [0,1], which describes the strength of this 

preference to send the locomotive to the next 

train. When 𝑝𝑛 = 1, the locomotive is 

absolutely certain to serve the next train and 

when 𝑝𝑛 = 0, the locomotive must return to the 

depot. Available time (𝐴𝑇̃𝑛
𝑘) can also be 

subjectively estimated as “SMALL”, 

“MEDIUM” and “LARGE”. It is assumed that 

the strength of preference depends on available 

time, and hereby three main rules can be 

considered:  

 Rule 1: if 𝐴𝑇̃𝑛
𝑘 = 𝑆𝑀𝐴𝐿𝐿 then 𝑝𝑛 =

𝐿𝑂𝑊,  

 Rule 2: if 𝐴𝑇̃𝑛
𝑘 = 𝑀𝐸𝐷𝐼𝑈𝑀 then 𝑝𝑛 =

𝑀𝐸𝐷𝐼𝑈𝑀,  

 Rule 3: if 𝐴𝑇̃𝑛
𝑘 = 𝐿𝐴𝑅𝐺𝐸 then 𝑝𝑛 =

𝐻𝐼𝐺𝐻, 

Every rule represents a fuzzy relation between 

the available time and preference strength. So 

for known available time 𝐴𝑇̃𝑛
𝑘 that remains after 

serving n trains, the strength of preference (𝑝𝑛
∗ ) 

to send the locomotive to the next train is easily 

calculated. This approximate reasoning 

procedure is graphically shown in Figure 5. 

This figure presents the membership function of 

the index preference obtained by applying the 

approximate rules and its center of gravity. 

Finally, based on the value of chosen preference 

index (𝑝𝑘
∗ ), a decision should be made whether 

to send a locomotive to the next train or return 

it to the depot. This decision is made as follows: 

the locomotive should be sent to the next train 

when 𝑝𝑘
∗ ≥ 𝑝∗∗ where p∗∗ is given from interval 

[0,1]. Otherwise, it should be return to the 

depot. It should be noted that the lower values 

of 𝑝∗∗ represent the endeavor to use the 

travelled time of locomotive as much as 

possible.  
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Figure 5. Determining preference strength (𝒑𝒏
∗ ) for known available time (𝑨𝑻̃𝒏

𝒌) 

3.4 Initial Population 

Part of the population is initialized using 

modified Push-Forward Insertion Heuristic 

(PFIH) method and λ-interchange mechanism, 

and part is initialized randomly. The PFIH 

method, first introduced by Solomon [Solomon, 

1987] to create an initial route configuration. 

This paper uses the modified PFIH method 

according to defined problem that cost function 

for inserting a customer into a new route is as 

follows: 

𝐶𝑜𝑠𝑡 (𝐶𝑖) =  −α𝑡̃(0)𝑂𝑖
+ 𝛽𝑙𝑖

+ 𝛾(
|𝜃𝑂𝑖

− 𝜃𝐷𝑗
|

360
) × 𝑡̃(0)𝑂𝑖

 

(4) 

 

Where 𝜃𝑂𝑖
and 𝜃𝐷𝑗

are the polar angle of the train 

in question and the last visited train in the last 

formed route, 𝑡̃(0)𝑂𝑖
 is the fuzzy travel time 

between the home depot and train i and 𝑙𝑖 is 

latest arrival time at train i. Therefore the 

unrouted train with the lowest cost is selected as 

the first train to be visited. Once the first train is 

selected for the current route, the heuristic 

selects from the set of unrouted trains the train 

j* which minimizes the total insertion cost 

between every edge {k, l} in the current route 

without violating the time and maximum route 

time constraints. The cost function of the 

proposed model is assumed to be minimization 

 

Available time 

Available time 

𝐴𝑇̃𝑛
𝑘 SMALL LOW 

𝑝𝑛 

𝐴𝑇̃𝑛
𝑘 MEDIUM MEDIUM 

𝑝𝑛 

𝐴𝑇̃𝑛
𝑘 LARGE HIGH 

𝑝𝑛 

𝑝𝑛
∗  𝑝𝑛 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

Available time 



 

S.F. Ghannadpour, A. Zarrabi 

 

129   International Journal of Transportation Engineering, 

Vol. 5/ No. 2/ Autumn 2017 

 

of total travel time consumed by locomotives. It 

should be noted that the above mentioned cost 

value is a fuzzy value and the ranking concept 

of fuzzy numbers is used to determine the 

lowest cost [Parandin and Fariborzi Araghi, 

2008].      

This paper uses a λ-interchange mechanism to 

move trains between routes to generate 

neighborhood solution for the problem (for 

more details see [Ghoseiri and Ghannadpour, 

2010]). In one version of the algorithm called 

GB (global best), the whole neighborhood is 

explored and the best move is selected. In the 

other version, FB (first best), the first 

admissible improving move is selected if one 

exists; otherwise the best admissible move is 

implemented.  

3.5 Selection 

This paper uses a standard k-tournament 

selection where a tournament set of size k is 

randomly drawn from the population and the 

chromosome with a lower cost (according to 

ranking concept of fuzzy numbers) is selected 

and will then be recombined via the 

recombination operators to create potential new 

population. 

3.6 Crossover & Mutation 

One of the unique and important aspects of the 

GA is the important role of the crossover 

operator. The classical crossovers (e.g., one-

point crossover and n-point crossover) are not 

appropriate for this sequencing model because 

of duplication and omission of vertices. This 

paper uses the best cost-best rout crossover 

(BCBRC), which selects a best route from each 

parent and then for a given parent, the 

customers (trains) in the chosen route from the 

opposite parent are removed. The final step is to 

locate the best possible locations for the 

removed trains in the corresponding children. 

This procedure is illustrated in Figure 6. 

According to this figure, route 4 from parent #1 

is selected and the customers on this route are 

removed from the routes of parent #2. This 

process is done similarly for another parent. 

Hereinafter for each parent the best location of 

removed customers are determined by the 

insertion procedure one at a time. This 

procedure is continued until two feasible 

offspring are produced. According to this 

figure, route (3) from parent #1 is selected 

randomly and the trains on this route are 

removed from the routes of parent #2. This 

process is done similarly for another parent. 

Hereinafter for each parent the best location of 

removed trains are determined by the insertion 

procedure one at a time. Moreover, the mutation 

schemes that used here are swap node and swap 

sequence.  

3.7 Hill-Climbing & Recovery 

Also the hill-climbing is used in order to 

improve the chromosomes obtained through 

crossover and mutation. Hill-climbing is a 

scheme for randomly selecting a portion of the 

population and improving them by a few 

iterations of removal and reinsertion. At the 

end, to additionally improve the quality of the 

population, the worst portion of the population 

will be replaced with the best of the parent 

population.  

4. Numerical Example and Results 

Analysis 

This section describes computational 

experiments carried out to investigate the 

performance of the proposed GA. Due to lack 

of the prior work on the proposed model, we 

have to analyze the validity and effectiveness of 

proposed method in three different sections. 
Moreover, the first idea of using these 

models for LRP has been considered in our 

recent paper [Ghoseiri and Ghannadpour, 

2009 and Ghoseiri and Ghannadpour, 2010] 

where, the effectiveness of the perspective 

was tested meticulously by an exact solver. 
The first section analyzes the model on the pure 

VRPTW when the travel times are certain and 

in the second one the changes of using proposed 

uncertainty travel times would be analyzes. 

Finally we applied the model on a complete 

randomly generated instance for locomotive 

assignment problem as a case study.  So, at the 

first section it is not expected that the proposed 

method yields new best known results for this 

general existing benchmarks, but the gap should 

be studied and reported to be able to evaluate 

the effectiveness of the proposed method. 
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Figure 6. Best cost route crossover 

 
Table 1. Results of the Solomon's instances for certain travel times 

Pro.  

Best 

Known 

 
Proposed Method 

Pro. 

Best 

Known 

 
Proposed Method 

Travel 

Cost 

Travel 

Cost 
% diff. 

Travel 

Cost 

 

Travel Cost % diff 

C101  828.94  828.94 0.00 C201 591.56  591.56 0.00 

C102  828.94  828.94 0.00 C202 591.56  591.56 0.00 

C103  828.06  828.06 0.00 C203 591.17  591.17 0.00 

C104  824.78  824.78 0.00 C204 590.60  599.96 1.56 

C105  828.94  828.94 0.00 C205 588.16  588.88 0.12 

C106  828.94  828.94 0.00 C206 588.49  588.88 0.07 

C107  828.94  828.94 0.00 C207 588.29  591.56 0.55 

C108  828.94  828.94 0.00 C208 588.32  588.32 0.00 

C109  828.94  828.94 0.00      

R101  1650.80  1668.0 1.03 R201 1206.42  1210.8 0.36 

R102  1434  1494.7 4.06 R202 1091.21  1091.22 0.00 

R103  1237.05  1252.1 1.20 R203 935.04  995.8 6.10 

R104  974.24  974.24 0.00 R204 789.72  832.2 5.10 

R105  1377.11  1382.5 0.39 R205 994.42  1087.8 8.58 

R106  1252.03  1270.3 1.44 R206 833  902.11 7.66 

R107  1100.52  1108.8 0.75 R207 814.78  904.90 9.96 

R108  960.26  971.91 1.20 R208 726.823  774.18 6.12 

R109  1169.85  1206.7 3.05 R209 855  875.6 2.35 

R110  1112.21  1156.5 3.83 R210 938.58  938.58 -0.00 

R111  1096.72  1120.1 2.09 R211 761.10  773.03 1.54 

R112  976.99  1036.9 5.78      

RC101  1636.92  1668.7 1.90 RC201 1134.91  1205.1 5.82 

RC102  1470.26  1493.2 1.54 RC202 1181.99  1196.1 1.18 

RC103  1261.67  1331.8 5.27 RC203 1020.1  1060.0 3.76 

RC104  1135.48  1177.2 3.54 RC204 798.46  901.46 11.43 

RC105  1589.4  1589.4 0.00 RC205 1300.25  1342.3 3.13 

RC106  1425.3  1425.3 0.00 RC206 1153.93  1194.8 3.42 

RC107  1222.1  1222.1 0.00 RC207 1040.67  1040.6 -0.01 

RC108  1142.66  1148.2 0.48 RC208 785.93  898.50 12.53 

 

4.1 Analysis the proposed method on the 

well-known benchmarks  

In this section, the effectiveness of the proposed 

method is evaluated on the Solomon’s VRPTW 

benchmark problem instances [Solomon, 1987]. 

These samples which have various kinds of 

assumptions have been considered 

consequently in literature review in order to 

check the effectiveness of the suggested 

algorithm. It should be noted that the proposed 

evolutionary method is coded and run on a PC 

with Core 2 Duo CPU (3.00 GHz) and 2.9 GB 

of RAM. Moreover, the model is implemented 

under parameters of Population size = 100, 

Generation number = 1000, Crossover rate = 

0.80, Mutation rate = 0.40, Repetition for 

experiments = 10. These parameters have been 

Parent #1: 

Parent #2: 

7 2 9 3 1 4  8 5 6 

1 5 6 7 4 8  3 9 2 



 

S.F. Ghannadpour, A. Zarrabi 

 

131   International Journal of Transportation Engineering, 

Vol. 5/ No. 2/ Autumn 2017 

 

tuned and deeply analyzed in our recent studies 

[Ghannadpour, Noori and Tavakkoli-

Moghaddam, 2014]. 

Table 1 presents a summary of results when the 

proposed method is applied on the well-known 

VRPTW instances where the total travel cost by 

the vehicles are minimized and when the certain 

travel times are used. The columns labeled 

“Best Known” give the best known published 

solutions in [Ghannadpour, Noori and 

Tavakkoli-Moghaddam, 2014]. The relative 

percentage Gap is also presented in this table for 

each instance and it is analyzed later.    

In this table, the best solutions found by 

proposed method are reported over 10 runs. 

Moreover, the average computational time for 

classes C1, R1 and RC1 varies between 1.5 and 

2.5 hours within 1000 generations and is 

between 3 and 5 hours for classes C2, R2 and 

RC2. The second classes require a larger CPU 

time due to the longer time windows, to allow a 

more flexible arrangement in the routing 

construction process.  

In order to know the performance of the 

proposed method, the findings are compared 

with the best known solutions for each category 

of Solomon’s problems. Table 2 summaries the 

results of Table 1 for each instance category. 

The average travel costs of the best known 

results and those found by the proposed method 

are presented in this Table. Additionally, the 

last column presents the total cost distance over 

whole 56 instances. The last row indicates the 

percentage difference between the results. 
% 

diff

. D 
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According to table (2), the proposed method 

obtained superior results for the class of C1 & 

C2. On the other hand, for the remaining 

categories, solutions from the proposed method 

are between 2% and 4.7% larger in travel cost 

than the best known results Moreover, the 

difference between the results of the proposed 

method and best known solutions for all 56 

instances is only 2.36% Therefore, the good 

quality results obtained by the model in general 

compare favorably, with respect to time and 

quality, to the best published results.  

4.2 Analysis the proposed method with 

uncertainty travel times 

Now, the results should be reconsidered, when 

the uncertainty travel times (fuzzy travel times) 

are used. To use this concept on the Solomon's 

instances, the predefined travel time between 

each customers i and j is changed to the triple 

[𝑡𝑖𝑗
(1)

, 𝑡𝑖𝑗
(2)

, 𝑡𝑖𝑗
(3)

] where 𝑡𝑖𝑗
(2)

 is equivalent to 

predetermined time in data set of Solomon's 

instances and 𝑡𝑖𝑗
(1)

 and 𝑡𝑖𝑗
(3)

 are selected 

randomly. As mentioned before, one important 

parameter that should be determined in this 

stage is p∗∗ where is given from [0,1]. For 

instance, the distance costs of instance RC101 

for different values of p∗∗ are illustrated in 

Figure 7. According to this figure , when 𝑝∗∗ =
0, one big route is permitted to be planned and 

just the capacity constraint is considered. In this 

regard, when such vehicle has used all its 

capacity, it should be returned to the depot. 

When 𝑝∗∗ = 1, the number of routes is equal to 

the number of customers and each route consists 

of only one customer. Based on this figure, the 

least total expected distance to be covered by 

the vehicles is realized when 0.35 < 𝑝∗∗ < 0.6. 

So it is assumed that the preference value for the 

instance RC101 is 0.45 and then the related cost 

is calculated as Table 3 that presents the results 

of applying proposed uncertainty model on 

some randomly selected Solomon's instance 

problems from Table 1 and in classes of R & 

RC. 

 

Table 2. Average results of proposed method and the best known solutions  

Results C1 C2 R1 R2 RC1 RC2 Total 

Best known 828.38 589.77 1195.15 904.19 1360.47 1052.03 55761.47 

Proposed 

method  
828.38 591.49 1220.23 944.20 1381.99 1104.85 57111.04 
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Figure 7. Different distance costs based on different strength of problem RC101 

 

Table 3. Results of proposed method for VRPTW with uncertainty travel time   

Pro. 

VRPTW with Certain Travel Time 

(from Table 1) 

 
VRPTW with fuzzy Travel Time 

Distance cost 

(best known) 
 

Distance cost 

(proposed method) 

 Travel cost 

 Total distance 

cost 
 Total travelled time 

R104 974.24  974.24  1120.9  (1188,1191,1201) 

R108 960.26  971.91  1250.3  (1290,1310,1346) 

R206 833  902.11  1056.4  (1168,1181,1195) 

R208 726.823  774.18  988.7  (1069,1154,1159) 

RC101 1636.92  1668.7  1778.9  (1801,1882,1885) 

RC106 1425.3  1425.3  1795.1  (2089,2187,2191) 

RC203 1020.1  1060.0  1506.5  (1840,1862,1905) 

RC208 785.93  898.50  990.1  (1060,1079,1144) 

 
In this Table, the column labeled “Travel cost” 

is divided into two columns that show the total 

travelled distance and the total travelled time 

that they are equivalent in classical point of 

view. It should be noted that the total travelled 

time is considered as the objective function and 

the total distance cost is only reported for the 

obtained solution. According to this table, the 

minimum total distance travelled by vehicles is 

deteriorated when the fuzzy travel times are 

considered.  

4.3 Case study 

In this section, a complete randomly generated 

medium size problem is considered as a case 

study. It includes 80 nodes and 40 trains per day 

in a weekly planning horizon and they have to 

be serviced without any delay. A maximum 

permissible operating time of eighteen hours is 

defined for all the locomotives running in the 

planning horizon and maintenance time for each 

locomotive is assumed to be 6 hours. The 

decision maker is faced with a transportation 

network with uncertainty travel times and the 

travel times depend on the locomotives' speed. 

The locomotives' speed is variable at different 

points of the routes and could be defined by the 

historical data and in accordance with a normal 
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probability distribution (for example it is 

assumed for one route from 45 to 65 km per 

hour). So, the uncertainty (fuzzy) travel times 

could be easily calculated by the distances and 

the probability Distribution of speed and by 

using the min, max and mean values of the 

related probability distribution.   

One important required input is the trains 

schedule graph resulted from train scheduling 

problem that is prior to locomotive routing & 

assignment models. The trains schedule graph 

is necessary to identify the origins, destinations 

and time windows of trains[𝑒𝑖 , 𝑙𝑖]. The trains 

must be serviced within their assigned time 

windows and the related locomotives would 

available on these predefined time windows to 

pull trains on time.  

Figure 8 summarizes the results of the above 

mentioned model and the related order of 

servicing. Based on the results 10 locomotives 

are needed to service all trains within their time 

windows to minimize the total travel time of 

locomotives and satisfy the predefined trains 

schedule graph. The total traveling time of this 

solution is (88.04, 95.11, 98.03) and the related 

traveling distance is 3016.8. 

 

 
Figure 8. Result of locomotive assignment model  

 

According to Figure 10, each locomotive serves 

the trains en route. For instance, the first 

locomotive starts its journey from depot and 

pulls trains 15, 22 and 30 to their destinations 

and then returns to the central depot for daily 

maintenance and inspection. In fact, this 

locomotive goes to the origin node of the 15th 

train zone and hauls the train to its destination 

and then goes to the origin node of the 22th train 

zone and keeps on going. i.e., the detailed order 

of servicing for this route is as 

{𝐷𝑒𝑝𝑜𝑡, 𝑂15, 𝐷15, 𝑂22, 𝐷22, 𝑂30, 𝐷30, 𝐷𝑒𝑝𝑜𝑡}. 

According to this plan the efficiency indices 

could also be calculated and analyzed. One 

important index related to locomotives within 

their availability is performance index (PI) 

[Yaghini and Lessan, 2010; Ghoseiri and 

Ghannadpour, 2009 and Ghoseiri and 

Ghannadpour, 2010] and it is calculated as 

follows: 
𝑃𝐼

=
𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 − 𝑡𝑜𝑡𝑎𝑙 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒
× 100 

(5) 

 

 As mentioned earlier, the total travel time of 

locomotive k who serves to n trains during its 

planned route is as equation (6) and the total 

waiting time imposed on this locomotive during 

the mentioned route is as equation (7).    

    

𝑇𝑂̃𝑘 = 𝑡̃𝑛−1 + 𝑡̃𝑂𝑛−1𝐷𝑛−1
+ 𝑡̃𝐷𝑛−1𝑂𝑛

 (6) 

𝑤̃𝑘  = ∑ 𝑡̃𝑖  − 𝑎𝑡̃𝑖

𝑛

𝑖=1

 (7) 

 

To improve the performance indices of 

locomotives it is better to consider the 

minimization of total waiting time as another 

objective function and develop the proposed 

model to the multi-objective concept.  

5. Conclusion 

This paper presented the locomotive routing 

problem (LRP) which is very important for 

railway companies, in view of high cost of 

operating locomotives. This problem was to 

determine the minimum cost assignment of 

homogeneous locomotives to a set of pre-

schedules trains in order to provide sufficient 

power to pull the trains from their origins to 

their destinations. This problem was modeled 

by using of vehicle routing problem with time 

windows (VRPTW) where trains performed as 

customers and they should have serviced in pre-

specified hard time windows. In this paper 

unlike most of the work where all the times are 

deterministic, uncertainty in travel time has 

been considered. The concepts of fuzzy sets and 

fuzzy control systems have been considered to 

model the uncertainty in travel times. A genetic 

algorithm (GA) with various heuristics has been 

proposed to tackle the model. The concepts of 

fuzzy sets and fuzzy control systems have also 
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been considered to model for uncertainty travel 

times and checking the maximum allowable 

travel time of locomotives. The performance of 

the algorithm has been evaluated in different 

steps and on various test problems generalized 

from a set of instances in the literature. First, the 

model has been analyzed on the pure VRPTW 

and then a complete randomly generated 

instance for locomotive assignment problem 

was considered as a case study. The 

computational experiments on data sets 

illustrate the efficiency and effectiveness of the 

proposed approach. Moreover, to improve the 

performance of locomotives it is better to 

consider the minimization of total waiting time 

as another objective function and develop the 

proposed model to the multi-objective concept. 

So the applicability of this idea would be 

considered in our future study and it would be 

tried to analyze the multi-objective models and 

solutions in this direction. 
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