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Abstract  

Location-Routing Problem (LRP) emerges as one of the hybrid optimization problems 

in distribution networks in which, total cost of the system would be reduced 

significantly by simultaneous optimization of locating a set of facilities among 

candidate locations and routing vehicles. In this paper, a mixed integer linear 

programming model is presented for a two-echelon location-routing problem with 

simultaneous pickup and delivery. In the investigated problem, one echelon of 

facilities, which is called the middle depot echelon, is positioned between central 

distribution centers and customers echelons. The number and capacity of middle depots 

and vehicles are considered to be limited. Besides, each network customer demands 

for both receiving a type of commodities and delivering another type to vehicles to be 

returned to the depot. In the literature of location routing problem, the majority of 

researches have been conducted in the deterministic conditions. However, we present 

a model in which data uncertainty is also taken into account and customers' demand is 

assumed to be a fuzzy parameter. We utilize a fuzzy programming approach to cope 

with uncertain demands. Moreover, a combined heuristic method based on simulated 

annealing (SA) algorithm and genetic algorithm (GA) is devised for solving the 

presented model. The results achieved from solving the problem in different sizes of 

numerical examples imply that the proposed hybrid algorithm outperforms other 

algorithms within reasonable length of time. The effectiveness of the proposed solution 

method is examined through a comprehensive numerical experiments. Finally, 

valuable insights are provided via conducting a number of sensitivity analyses. 
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1. Introduction 

 Economic consideration is one of the most 

significant issues in business environment so 

enterprises have always been seeking the 

ways to reduce costs in different parts of 

organizations.  The fact is that a great portion 

of these expenses belongs to logistics costs. 

Being a substantial part of any supply chains, 

distribution networks need to be 

appropriately designed to reduce costs and 

improve responsiveness of the chain. 

Increasing the efficiency of distribution 

systems can be considered as one of the 

primary goals of integrated logistics systems. 

Thus, optimization of logistics systems has 

become a critical problem in supply chain 

management in recent years.  Integrated 

problems in distribution networks can be 

categorized into location-routing problems 

(LRP), location-inventory problems (LIP), 

inventory-routing problems (IRP), vehicle-

routing problems (VRP), and so on [Majidi, 

Hosseini-Motlagh and Ignatius, 2017]. The 

location-routing problem (LRP) will convert 

to the vehicle-routing problem (VRP) if the 

location of facilities is predetermined. 

Location-routing problems are in the set of 

NP-hard problems, and solving each problem 

separately (i.e. once, the location-allocation 

problem and then routing problem) would 

result in sub-optimal solutions [Cheraghi, 

Hosseini-Motlagh and Ghatreh Samani, 

2016].   

Location and routing decisions are the two 

interdependent elements of a distribution 

network.  Deciding on locating facilities 

without accounting for routing 

considerations may increase total network 

cost. [Laporte, 1987].   

 LRP is applicable in many fields such as 

food and beverage distribution, postal parcels 

and pharmaceuticals deliveries and military 

applications. 

In some cases, customers may have pickup 

and delivery demands at the same time. In 

such situations, the  problem is called 

location-routing problem with simultaneous 

pickup and delivery (LRPSPD), which copes 

with determining the location of facilities and 

vehicles routes in such a way that both 

delivery and pickup demands for each 

customer are supposed to be simultaneously 

satisfied by vehicles to minimize total cost 

[Karaoglan et al. 2011]. Delivering car spare 

parts and collecting defective parts and so on 

can be considered as the applications of this 

problem. 

Noteworthy, in large-scale optimization 

problems, enough knowledge about the exact 

value of some parameters including demands, 

costs, travelling time and so on is not 

accessible [Riahi, Hosseini-Motlagh and 

Teimourpour, 2013; Majidi, Hosseini-

Motlagh, Yaghoubi and Jokar, 2017; [Jokar 

and Hosseini-Motlagh, 2015]]. In such cases, 

we encounter fuzzy impreciseness (i.e., the 

lack of knowledge about the precise value of 

a parameter). Thus, we need to refer to the 

professional experts' subjective knowledge to 

have an estimation of the value of fuzzy 

parameters [Cheraghi, Hosseini-Motlagh and 

Ghatreh samani, 2016]. In such situations, the 

parameter fuzziness is handled by applying 

fuzzy programming approaches whose one of 

the effective methods among those, which 

have been frequently addressed in the 

literature, is based on the fuzzy credibility 

approach which has been devised in this 

research. The remainder of the paper is 

organized as follows. In Section 2, the recent 

literature of location-routing problems is 

reviewed. The problem description and 

mathematical formulation of the proposed 
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model is provided in Section 3. In Section 4, 

a fuzzy approach is developed to deal with the 

demand fuzziness. In Section 5, our heuristic 

method, which is the combination of meta-

heuristic algorithms (i.e., simulated annealing 

and genetic algorithms) is presented. Section 

6 provides several numerical examples to 

evaluate the effectiveness of the proposed 

method. Finally, concluding remarks and 

future works recommendations are given in 

Section 7. 

2. Literature Review  

In this section, we first briefly review the 

related literature on the location-routing 

problem (LRP) and its derivatives (i.e. the 

location-routing problem with simultaneous 

pickup and delivery (LRPSPD) and the two-

echelon location routing problem (2E-LRP)), 

then investigate the papers which have taken 

into account the data uncertainties.    

The first study of location- routing problems 

refers to Webb [Webb, 1968].  The study was 

expanded by Watson-Gandy and Dohrn 

[Watson-Gandy and Dohrn, 1973], Nambiar, 

Gelders and Van Wassenhove [Nambiar, 

Gelders and Van Wassenhove, 1981] and 

Madsen [Madsen, 1983]. The location- 

routing problem could be classified based on 

different criteria. The first classification was 

provided by Min, Jayaraman and Srivastava 

[Min, Jayaraman and Srivastava, 1998]. 

Nagy and Salhi [Nagy and Salhi, 2007] 

classified this problem based on standard and 

non-standard structures and the type of 

objective functions. Recently, Prodhon and 

Prins [Prodhon and Prins, 2014] presented a 

classification of location-routing problems 

according to solution methods and modeling 

approaches. 

 LRPSPD, a branch of LRP, was firstly 

introduced by karaoglan et al. [karaoglan et 

al. 2009]. They proposed two mixed integer 

programming (MIP) formulations, which are 

flow-based and node-based formulations, 

respectively. They presented several 

polynomial-size valid inequalities to 

strengthen the models. In another effort, 

Karaoglan et al. [Karaoglan et al. 2011] 

addressed a mathematical model for 

LRPSPD and applied an exact algorithm 

based on branch-and-cut (BandC) algorithm 

to solve the problem. They also developed 

simulated annealing (SA) to improve the 

initial solution during the search process of 

the branch-and-cut algorithm. In the 

investigated problem, vehicles are considered 

to be homogeneous and their numbers are 

limited. In another work, Karaoglan et al. 

[Karaoglan et al., 2012] presented a two-

phase heuristic method based on simulated 

annealing, called tp-SA. The quality of the 

two proposed formulations (i.e. flow-based 

and node-based formulations) is compared 

with each other with respect to their ability to 

obtain optimal solutions. Later on, the many-

to-many location-routing problem with 

simultaneous pickup and delivery appealed to 

Rieck, Ehrenberg and Zimmerman [Rieck, 

Ehrenberg and Zimmerman, 2014]. In their 

proposed model, the location of hub facilities 

was determined. The model was solved in 

both small size by using exact methods and in 

large size via genetic algorithm (GA). 

Jacobsen and Madsen [Jacobsen and Madsen, 

1980] presented a two-echelon location-

routing problem (2E-LRP) for the first time. 

A central facility was predetermined in the 

first echelon and several local facilities were 

established in customers' side. They 

employed three heuristic methods to solve the 

problem. A two-echelon model for the 

location-routing problem was addressed by 

Wasner and Zäpfel [Wasner and Zäpfel, 
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2004] and the limitation on the capacity of 

vehicles as well as delivery constraints are 

taken into account. However, the capacity of 

facilities is considered to be unlimited. They 

tailored a two-phase algorithm in which the 

location of each facility is determined in the 

first phase, afterwards, vehicles routing is 

dealt with in the second phase. Ambrosino 

and Scutella [Ambrosino and Scutella, 2005] 

developed a two-echelon location-routing 

problem in which customers were visited in 

several clusters. A two-phase method was 

devised to solve their proposed model. In the 

first phase, customers' clustering, vehicles 

allocation to each cluster and the location of 

local facilities are determined by employing 

an integer programming model. Then, in the 

second phase, a travelling salesman problem 

(TSP) is solved for each cluster by using a 

branch-and-cut algorithm. Eventually, the 

solutions are improved through replacing 

local facilities with each other. Nikbakhsh 

and Zegordi [Nikbakhsh and Zegordi, 2010] 

worked on a model for the two-echelon 

capacitated location-routing problem, in 

which the capacity of both vehicles and 

facilities was assumed to be limited. They 

regarded constraints on maximum tour length 

for vehicles and applied a heuristic method 

along with a meta-heuristic algorithm based 

on simulated annealing (SA) to solve the 

problem. Moreover, the corresponding 

results were evaluated by solving the problem 

in different sizes.  

Although the related papers on the subject of 

LRP have been mostly considered in 

deterministic conditions, inadequate 

knowledge of uncertain parameters such as 

demand, travel time and so on has made the 

researchers consider uncertainty conditions 

in their works to have a better perception of 

reality. In this regard, a location-routing 

problem with time windows (LRPTW) was 

presented by Zarandi et al. [Zarandi et al., 

2013]. They considered travel time as a fuzzy 

parameter and employed simulated annealing 

(SA) to solve the model, then compared the 

respective results with those existing in the 

literature. Golozari, Jafari, and Amiri 

[Golozari, Jafari, and Amiri, 2013] worked 

on a routing problem while considering the 

constraint on maximum route length. In the 

concerned problem, customers' demand and 

travel time as well as service time were 

regarded to be fuzzy parameters. They used 

simulated annealing (SA) algorithm to solve 

the presented model.  Nadizadeh and 

Hosseini Nasab [Nadizadeh and Hosseini 

Nasab, 2014] proposed a model for the 

location-routing problem under fuzzy 

demand over a multi-period planning 

horizon, and devised a clustering approach to 

solve the proposed model. 

Recently, Riquelme-Rodríguez, Gamache 

and Langevin [Riquelme-Rodríguez, 

Gamache, and Langevin, 2016] addressed 

the first method for a periodic capacitated 

location arc routing problem for suppressing 

dust in hauling roads. They proposed two 

methods for finding the initial location of 

water depots in the road and then compared 

their performance with the aim of 

minimizing penalty costs arising from the 

lack of humidity in roads as well as routing 

costs. Afterwards, the initial location of 

water depots and the initial vehicle routing 

were modified by applying an exchange 

algorithm and an adaptive large 

neighborhood search algorithm, 

respectively.  

A novel bi-objective multi-product 

capacitated vehicle routing problem was 

presented by Tavakkoli-Moghaddam, Raziei, 

and Tabrizian [Tavakkoli-Moghaddam, 

Raziei, and Tabrizian, 2016] in which the 

fleet of vehicles was heterogeneous, and 
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demand amounts as well as volume of 

products were considered to be tainted with 

uncertainty. Minimizing the cost of used 

vehicles, fuel consumption along with the 

shortage of products are the two objectives of 

the problem. They applied the ε-constraint 

method to solve the proposed bi-objective 

model and devised a fuzzy programming 

approach to deal with the uncertainty. 

Hiassat, Diabat and Rahwan [Hiassat, Diabat 

and Rahwan, 2017] proposed a mixed integer 

programming model for a location-inventory-

routing problem for perishable products. 

Their research aimed to determine the 

location and required number of depots, the 

level of inventory at each retailer, and the 

travelling routes. They developed a Genetic 

Algorithm approach to solve the under-

investigated problem and obtained near-

optimal solutions in reasonable length of 

time. A novel approach for location routing 

problem was presented by Schiffer and 

Walther [Schiffer and Walther, 2017] while 

considering strategic planning for electric 

logistics fleets. The approach considers the 

decisions of charging station siting and 

vehicle routing simultaneously to illustrate 

the significance of jointly consideration of 

siting and routing decisions. Applying the 

proposed approach, they minimized total 

costs, distance, and the number of vehicles 

and charging stations concurrently. In an 

effort, Nikkhah Qamsari, Hosseini-Motlagh 

and Jokar [Nikkhah Qamsari, Hosseini-

Motlagh and Jokar, 2017] developed a two 

phase hybrid heuristic approach to solve the 

multi-depot multi-vehicle routing problem 

while accounting for inventory constraints. 

Their concerned model aimed to minimize 

total cost including inventory holding cost at 

distribution centers and the customers' side as 

well as transportation costs. They applied a 

variable neighborhood search algorithm to 

modify the initial solution obtained in 

construction phase. They illustrated the 

capability of their proposed algorithm to find 

near-optimal solutions within reasonable 

computing time.  

To the best of our knowledge, the majority of 

studies have addressed the two-echelon 

location-routing problem in deterministic 

condition and a study on this subject while 

considering uncertainty conditions is non-

existent. To fill this gap, our research is 

differentiated from the ones existing in the 

literature of LRP by considering the 

following contributions: 

 A mixed integer linear programming 

model for a two-echelon location- 

routing problem with simultaneous 

pickup and delivery under 

uncertainty is proposed.   

 The uncertainty in customers' 

demand is accounted for in the form 

of fuzzy numbers which is handled 

by applying a fuzzy credibility 

programming approach. 

 The proposed model is solved by 

means of a hybrid solution approach 

which is the combination of genetic 

and simulated annealing algorithms. 

 

3. Problem description  

This paper puts forward a 2E-LRPSPD under 

fuzzy demands by considering two types of 

facilities, i.e., the central and secondary 

facilities where products get transferred from 

central depots to secondary ones and then are 

distributed among the customers or picked up 

from customers to be returned to the 

facilities. The secondary facilities have an 

intermediate role in the distribution network 

and are regarded as temporary places for 
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storing, loading and unloading goods. The 

concerned 2E - LRPSPD can be 

schematically depicted in Figure 1. In this 

research, we seek to optimize the number of 

open facilities along with routing between 

established secondary and central facilities as 

well as routing between customers and 

secondary facilities with the aim of 

customers' demand satisfaction and 

minimizing the network total cost including 

establishment cost, travelling cost and 

vehicles fixed cost. In the concerned network, 

travelling route starts from a main depot and 

ends at the same depot. Each vehicle belongs 

to one route and is in charge of delivering 

goods from main depot to the secondary 

depot and from secondary depot to customers 

such that each customer is visited exactly 

once and the customers' demands do not 

exceed the capacity of the vehicle, and 

picking up goods from customers to return to 

the same depot.   

 
Figure 1.The considered two-echelon location-

routing problem 

3.1 Mathematical Formulation in 

Deterministic Mood 

Consider graph 𝐺 = (𝑉, 𝐸) in which 𝑉 

represents the set of network nodes which 

includes  𝑉𝑂 , the set of central depots, VR, the 

set of middle depots and 𝑉𝐶, the set of 

customers. In this graph, 𝑉1 and 𝑉2 indicates 

the nodes of the first and second echelons, 

respectively, such that (𝑉1 = 𝑉𝑂 ∪ 𝑉𝑅) and 

(𝑉2 = 𝑉𝑅 ∪ 𝑉𝐶). The set of total existing arcs 

of the graph (E) includes undirected arcs 

connecting central distribution centers to 

middle ones, middle distribution centers to 

customers and customers to each other. The 

connecting arcs must satisfy the following 

triangular inequality (𝑑𝑖𝑗 ≤ 𝑑𝑖𝑘 + 𝑑𝑘𝑗). Set K 

includes vehicles which are used between 

middle distribution centers and customers in 

the second echelon. The aforementioned 

problem is studied under the following 

constraints: 

 

 Each vehicle travels a route while 

starting from a specific depot and 

finishing in the same depot. 

 Each route can provide services for only 

one vehicle.  

 Each customer is allowed to be served 

by only one vehicle. 

 Customers' pickup and delivery 

demands are satisfied simultaneously 

and do not exceed the capacity of 

vehicles. 

 Total demands from customers 

allocated to a depot do not exceed the 

depot capacity. 

 Total demands in a route do not exceed 

the capacity of vehicle assigned to that 

route. 

 

We use the following components to formulate 

the proposed model. 

 

 

 

 

 

 

 



 
Mohammadreza Ghatreh Samani , Seyyed-Mahdi Hosseini-Motlagh 

 
 

65   International Journal of Transportation Engineering, 

Vol.5/ No.1/ Summer 2017 

 Model sets, parameters and decision variables 

3.1.1. Sets 

I The set of customers 

O The set of central depots 

R The set of candidate middle depots  

K The set of vehicles  

3.1.2. Technical parameters 

CDO The capacity of each central depot  

RDR The capacity of each middle depot  

di The amount of each customer’s delivery demand 

pi The amount of each customer’s pickup demand 

CV The capacity of each vehicle 

3.1.3. Cost parameters 

FR Establishment fixed cost of each middle depot  

GOR Travel cost between a pair of central and middle depots 

Hij Travel cost from customer i to j 

FCk Fixed cost of each vehicle  

3.1.4.  Decision variables  

 

 

3.1.4 Objective Function 

𝑀𝑖𝑛 ∑∑𝐻𝑖𝑗𝑦𝑖𝑗 + ∑ ∑ 𝐺𝑂𝑅𝑥𝑂𝑅
𝑅∈𝑁𝑅𝑂∈𝑉𝑂𝑗∈𝑉2𝑖∈𝑉2

+ ∑ 𝐹𝑅𝑤𝑅 +

𝑅∈𝑉𝑅

∑ ∑ 𝐹𝐶𝑘𝑝𝑖𝑅
𝑅∈𝑉𝑅𝑖∈𝑉2

 
(1) 

 

3.1.5 Model Constraints 

 

∑ 𝑥𝑂𝑅 ≤ 𝐶𝐷𝑂
𝑅∈𝑉𝑅

 ∀O ∈ 𝑉𝑂 (2) 

∑ 𝑥𝑂𝑅 ≤ 𝑅𝐷𝑅 ∗

𝑂∈𝑉𝑂

𝑂𝑅 ∀R ∈ 𝑉𝑅 (3) 

∑ 𝑥𝑂𝑅 ≥ ∑𝑑𝑖 ∗

𝑖∈𝑉2𝑂∈𝑉𝑂

𝑝𝑖𝑅 ∀R ∈ 𝑉𝑅 (4) 

∑𝑦𝑖𝑗
𝑗∈𝑉2

= 1 ∀i ∈ 𝑉𝐶 (5) 

𝐱𝐎𝐑   The amount of commodity transported from central depot O to middle depot R. 
(∀R ∈ VR, ∀O ∈

VO) 

𝐲𝐢𝐣    Binary variable, equal to 1 if a vehicle moves to node j from node i; 0, otherwise. (∀i, j ∈ V2) 

𝐎𝐑    Binary variable, equal to 1 if middle depot R is established; 0, otherwise. (∀R ∈ VR) 

𝐩𝐢𝐑   Binary variable, equal to 1 if customer i is allocated to middle depot R; 0, otherwise. (∀i ∈ VC, ∀R ∈ VR) 

𝐙𝐢     Total demands delivered to customers before meeting customer i (∀i ∈ V2) 

𝐖𝐢   Total demands picked up from customers after meeting customer i (∀i ∈ V2) 
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∑𝑦𝑗𝑖 = ∑ 𝑦𝑖𝑗
𝑗∈𝑁2𝑗∈𝑉2

 ∀i ∈ 𝑉2 (6) 

∑ 𝑝𝑖𝑅 = 1

𝑅∈𝑉𝑅

 ∀i ∈ 𝑉𝐶 (7) 

∑𝑑𝑖 ∗ 𝑝𝑖𝑅 ≤ 𝑅𝐷𝑅 ∗ 𝑂𝑅
𝑖∈𝑉2

 ∀R ∈ 𝑉𝑅 (8) 

∑𝑝𝑖 ∗ 𝑝𝑖𝑅 ≤ 𝑅𝐷𝑅 ∗ 𝑂𝑅
𝑖∈𝑉2

 ∀R ∈ 𝑉𝑅 (9) 

𝑍𝑗 − 𝑍𝑖 + 𝐶𝑉 ∗ 𝑦𝑖𝑗 + (𝐶𝑉 − 𝑑𝑖 − 𝑑𝑗)𝑦𝑗𝑖 + 𝑑𝑖 ≤ 𝐶𝑉 
∀i, j ∈ 𝑉𝑐 , 𝑖 ≠ 𝑗 (10) 

𝑊𝑗 −𝑊𝑖 + 𝐶𝑉 ∗ 𝑦𝑖𝑗 + (𝐶𝑉 − 𝑝𝑖 − 𝑝𝑗)𝑦𝑗𝑖 + 𝑝𝑖 ≤ 𝐶𝑉 
∀i, j ∈ 𝑉𝑐 , 𝑖 ≠ 𝑗 (11) 

𝑍𝑖 +𝑊𝑖 − 𝑑𝑖 ≤ 𝐶𝑉 ∀i ∈ 𝑉𝐶 (12) 

𝑑𝑖 + ∑ 𝑑𝑗𝑦𝑖𝑗 ≤ 𝑍𝑖
𝑗∈𝑉𝐶,𝑗≠𝑖

 ∀i ∈ 𝑉𝐶 (13) 

𝑝𝑖 + ∑ 𝑝𝑗𝑦𝑖𝑗 ≤ 𝑊𝑖

𝑗∈𝑉𝐶,𝑗≠𝑖

 ∀i ∈ 𝑉𝐶 (14) 

𝑍𝑖 + ( 𝐶𝑉 − 𝑑𝑖)(∑ 𝑦𝑖𝑅
𝑅∈𝑉𝑅

) ≤ 𝐶𝑉 ∀i ∈ 𝑉𝐶 (15) 

𝑊𝑖 + ( 𝐶𝑉 − 𝑝𝑖)(∑ 𝑦𝑅𝑖
𝑅∈𝑉𝑅

) ≤ 𝐶𝑉 ∀i ∈ 𝑉𝐶 (16) 

𝑦𝑖𝑅 ≤ 𝑝𝑖𝑅 ∀i ∈ 𝑉𝐶 , ∀𝑅 ∈ 𝑉𝑅 (17) 

𝑦𝑅𝑖 ≤ 𝑝𝑖𝑅 ∀i ∈ 𝑉𝐶 , ∀𝑅 ∈ 𝑉𝑅 (18) 

𝑦𝑖𝑗 + 𝑝𝑖𝑅 + ∑ 𝑝𝑗𝑚 ≤ 2

𝑚∈𝑉𝑅,𝑚≠𝑅

 ∀i, j ∈ 𝑉𝑐 , 𝑖 ≠ 𝑗 ,∀𝑅 ∈ 𝑉𝑅 (19) 

𝑦𝑖𝑗 ∈ {0,1} ∀i, j ∈ 𝑉2 (20) 

𝑥𝑂𝑅 ≥ 0 ∀O ∈ 𝑉𝑂 , ∀R ∈ 𝑉𝑅 (21) 

𝑝𝑖𝑅 ∈ {0,1} ∀i ∈ 𝑉𝐶 (22) 

𝑂𝑅 ∈ {0,1} ∀𝑅 ∈ 𝑉𝑅 (23) 

𝑍𝑖 ≥ 0 ∀i ∈ 𝑉2 (24) 

𝑊𝑖 ≥ 0 ∀i ∈ 𝑉2 (25) 
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The objective function (1) aims to minimize the 

total cost of the network consisting of travel 

costs in the first and second distribution levels, 

establishment fixed cost of middle depots, and 

vehicles fixed costs. Constraint (2) shows the 

capacity limitation of central depots. In other 

words, the amount of goods stored in a central 

depot and distributed to a middle depot does not 

exceed the capacity of the central depot. The 

limited capacity of middle depots is represented 

by constraint (3). Better to say, the amount of 

goods received by a middle depot does not 

exceed the capacity of the depot. Constraint (4) 

is the inflow and outflow conservation 

constraint for middle depots. It guarantees that 

the amount of goods received by each middle 

depot is equal to the amount of goods 

dispatched from the depot. In other words, 

middle depots act as a bridge between central 

depots and customers. Each customer is 

allowed to be visited exactly once by any 

vehicles. This is guaranteed by constraint (5). 

Constraint (6) denotes the inflow and outflow 

conservation constraint for each customer. 

Indeed, this constraint states that each customer 

is once visited and delivered the goods and is 

left while picking up the required goods. 

Constraint (7) ensures that each customer can 

be assigned to only one middle depot. 

Constraints (8) indicates that total demand 

which is delivered from each middle depot to 

customer does not exceed the capacity of the 

middle depot. Constraint (9) ensures that total 

pickup demand from customers to each middle 

depot does not exceed the capacity of the depot. 

Constraints (10) and (11) determine delivery 

and pickup flows in each arc, considering the 

capacity of vehicles, respectively.  In other 

words, total delivery demand to each customer 

and total pickup demand from each customer do 

not exceed the capacity of the vehicle. 

Constraint (12) shows the maximum capacity of 

each vehicle. Constraints (13) and (15) define 

lower bound and upper bound of total delivery 

demand variable. Similarly, constraints (14) 

and (16) denote lower bound and upper bound 

of total pickup demand variable. Constraints 

(17)-(19) denote sub-tour elimination 

constraints. Better to say, these constraints 

prevent undesirable tours in which some 

customers are neglected to be visited or 

vehicles, starting from a specific depot, do not 

return to the same depot at the end of the 

service. Constraints (20)-(25) specify the type 

of decision variables.  

4. Fuzzy Programming Approach 

In this section, we devise a fuzzy programming 

approach based on the credibility theory to cope 

with the customers' fuzzy demands. The 

problem is handled by applying a credibility-

based chance constrained programming method 

as an efficient fuzzy approach because it 

enables the decision maker to satisfy the chance 

constraints at least at a minimum confidence 

level 𝛼, and can be applied for both triangular 

and trapezoidal fuzzy numbers [Cheraghi, 

Hosseini-Motlagh, 2016]. Let 𝜗̃ be a fuzzy 

variable with membership function 𝜇(𝑥)  and 

𝑟 be a real number. The credibility measure can 

be formulated as follows. (Equation 26) [Liu 

and Liu, 2002] Since the 𝑃𝑜𝑠 {𝜗̃  ≤ r} =

𝑆𝑢𝑝𝑥≤𝑟μ(x) and 𝑁𝑒𝑐 {𝜗̃  ≤ r} = 1 − 𝑆𝑢𝑝𝑥>𝑟μ(x) 

the relationship (26) can be substitute by the 

following equation. Thus, the expected value of 𝜗̃ 

based on credibility measure is represented by 

equation (28). If ϑ̃ be a trapezoidal fuzzy number, as 

shown in Figure 2, such that ϑ̃ =

(ϑ(1), ϑ(2), ϑ(3), ϑ(4)), the expected value of  ϑ̃ will 

be equal to(ϑ(1) + ϑ(2) + ϑ(3) + ϑ(4))/4 , and the 

credibility measure will be determined by equations 

(29) and (30). It is shown that if α ≥ 0.5 , the 
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credibility measure will be equivalent by equations 

(30). [Zhu and Zhang, 2009] 

4.1 The Equivalent Auxiliary Crisp 

Model 

Assuming that the chance constraints are 

satisfied with the minimum confidence level 0.5, 

or better to say, 𝛼 > 0.5, the proposed model can 

be converted to the equivalent crisp one using the 

relationships (31) and (32). However, the rest of 

the elements will remain unchanged.  According 

to the above descriptions, the equivalent crisp 

model can be presented as equations (33)-(42). 

(26) 𝐶𝑟 {𝜗̃  ≤ 𝑟} =
1

2
(𝑃𝑜𝑠 {𝜗̃  ≤ 𝑟} + 𝑁𝑒𝑐 {𝜗̃  ≤ 𝑟}) 

 

(27) 𝐶𝑟 {𝜗̃  ≤ r} =
1

2
(𝑆𝑢𝑝𝑥≤𝑟μ(x) + 1 − 𝑆𝑢𝑝𝑥>𝑟μ(x)) 

 

(28) 𝐸 [𝜗̃] = ∫ 𝐶𝑟 {𝜗̃  ≥ r}
∞

0

𝑑𝑟 − ∫ 𝐶𝑟 {𝜗̃  ≤ r}
0

−∞

𝑑𝑟 

 
Figure 2. A trapezoidal fuzzy variable 

 

(29) 𝐶𝑟 {𝜗̃  ≤ r} =

{
 
 
 
 

 
 
 
 

1

2

0                                    𝑟 ∈ (−∞, 𝜗(1)]

𝑟 − 𝜗(1)

2(𝜗(2) − 𝜗(1))
            𝑎𝑛𝑑 𝑟 ∈ (𝜗(1), 𝜗(2)]

                                       𝑟 ∈ (𝜗(2), 𝜗(3)]

𝑟 − 2𝜗(3) + 𝜗(4)

2(𝜗(4) − 𝜗(3))
         𝑎𝑛𝑑𝑟 ∈ (𝜗(3), 𝜗(4)]

1                               𝑎𝑛𝑑𝑟 ∈ (𝜗(4), +∞]

 

 

1 

𝜗(1) 𝜗(2) 𝜗(3) 𝜗(4) 
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(30) 𝐶𝑟 {𝜗̃  ≥ r} =

{
 
 
 
 

 
 
 
 

1

2

1                                 𝑟 ∈ (−∞, 𝜗(1)]

2𝜗(2) − 𝜗(1) − 𝑟

2(𝜗(2) − 𝜗(1))
      𝑎𝑛𝑑𝑟 ∈ (𝜗(1), 𝜗(2)]

                                      𝑟 ∈ (𝜗(2), 𝜗(3)]

𝜗(4) − 𝑟

2(𝜗(4) − 𝜗(3))
           𝑎𝑛𝑑 𝑟 ∈ (𝜗(3), 𝜗(4)]

  0                                𝑎𝑛𝑑𝑟 ∈ (𝜗(4), +∞]

 

 

(31) 𝐶𝑟 {𝜗̃  ≤ r} ≥ α
 
⇔𝑟 ≥ (2 − 2𝛼)𝜗(3) + (2𝛼 − 1)𝜗(4) 

(32) 𝐶𝑟 {𝜗̃  ≥ r} ≥ α
 
⇔𝑟 ≥ (2𝛼 − 1)𝜗(1) + (2 − 2𝛼)𝜗(2) 

 

𝒅𝒊,𝒇(𝒏)
𝒔  The amount of each customer's delivery demand  under each scenario 

𝒑𝒊,𝒇(𝒏)
𝒔  The amount of each customer's pickup demand under each scenario 

 

 

∑ 𝑥𝑂𝑅
𝑆 ≥ ∑((2 − 2α) ∗ di,𝑓(3)

S + (2α − 1) ∗ di,𝑓(4)
S ) ∗ 𝑝𝑖𝑅

𝑆

𝑖∈𝑉2𝑂∈𝑉𝑂

 ∀R ∈ 𝑉𝑅 , ∀𝑠 (33) 

∑((2 − 2α) ∗ di,𝑓(3)
S + (2α − 1) ∗ di,𝑓(4)

S ) ∗ 𝑝𝑖𝑅
𝑆 ≤ 𝑅𝐷𝑅 ∗ 𝑂𝑅

𝑖∈𝑉2

 ∀R ∈ 𝑉𝑅 , ∀𝑠 (34) 

∑((2 − 2α) ∗ pi,𝑓(3)
S + (2α − 1) ∗ pi,𝑓(4)

S ) ∗ 𝑝𝑖𝑅
𝑆 ≤ 𝑅𝐷𝑅 ∗ 𝑂𝑅

𝑖∈𝑉2

 ∀R ∈ 𝑉𝑅 , ∀𝑠 (35) 

𝑍𝑗
𝑆 − 𝑍𝑖

𝑆 + 𝐶𝑉 ∗ 𝑦𝑖𝑗
𝑆

+ (𝐶𝑉 − ((2 − 2α) ∗ di,𝑓(3)
S + (2α − 1) ∗ di,𝑓(4)

S )

− ((2 − 2α) ∗ dj,𝑓(3)
S + (2α − 1) ∗ dj,𝑓(4)

S )) 𝑦𝑗𝑖
𝑆

+ ((2 − 2α) ∗ di,𝑓(3)
S + (2α − 1) ∗ di,𝑓(4)

S ) ≤ 𝐶𝑉 

∀i, j
∈ 𝑉𝑐 , 𝑖
≠ 𝑗, ∀𝑠 

(36) 
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𝑊𝑗
𝑆 −𝑊𝑖

𝑆 + 𝐶𝑉 ∗ 𝑦𝑖𝑗
𝑆

+ (𝐶𝑉 − ((2 − 2α) ∗ pi,𝑓(3)
S + (2α − 1) ∗ pi,𝑓(4)

S )

− ((2 − 2α) ∗ pj,𝑓(3)
S + (2α − 1) ∗ pj,𝑓(4)

S )) 𝑦𝑗𝑖
𝑆

+ ((2 − 2α) ∗ pi,𝑓(3)
S + (2α − 1) ∗ pi,𝑓(4)

S ) ≤ 𝐶𝑉 

∀i, j ∈ 𝑉𝑐 , 𝑖
≠ 𝑗, ∀𝑠 

(37) 

𝑍𝑖
𝑆 +𝑊𝑖

𝑆 − ((2 − 2α) ∗ di,𝑓(3)
S + (2α − 1) ∗ di,𝑓(4)

S ) ≤ 𝐶𝑉 ∀i ∈ 𝑉𝐶 , ∀𝑠 (38) 

((2 − 2α) ∗ di,𝑓(3)
S + (2α − 1) ∗ di,𝑓(4)

S )

+ ∑ ((2 − 2α) ∗ dj,𝑓(3)
S + (2α − 1) ∗ dj,𝑓(4)

S )𝑦𝑖𝑗
𝑆 ≤

𝑗∈𝑉𝐶,𝑗≠𝑖

𝑍𝑖
𝑆 

∀i ∈ 𝑉𝐶 , ∀𝑠 (39) 

((2 − 2α) ∗ pi,𝑓(3)
S + (2α − 1) ∗ pi,𝑓(4)

S )

+ ∑ ((2 − 2α) ∗ pj,𝑓(3)
S + (2α − 1) ∗ pj,𝑓(4)

S ) ∗ 𝑦𝑖𝑗
𝑆 ≤ 𝑊𝑖

𝑆

𝑗∈𝑉𝐶,𝑗≠𝑖

 

∀i ∈ 𝑉𝐶 , ∀𝑠 (40) 

𝑍𝑖
𝑆 + ( 𝐶𝑉 − ((2 − 2α) ∗ di,𝑓(3)

S + (2α − 1) ∗ di,𝑓(4)
S ))(∑ 𝑦𝑖𝑅

𝑆

𝑅∈𝑉𝑅

) ≤ 𝐶𝑉 ∀i ∈ 𝑉𝐶 , ∀𝑠 (41) 

𝑊𝑖
𝑆 + ( 𝐶𝑉 − ((2 − 2α) ∗ pi,𝑓(3)

S + (2α − 1) ∗ pi,𝑓(4)
S ))(∑ 𝑦𝑅𝑖

𝑆

𝑅∈𝑉𝑅

) ≤ 𝐶𝑉 ∀i ∈ 𝑉𝐶 , ∀𝑠 (42) 

 

 

 

5. Solution Methods 

5.1 Genetic Algorithm (GA) 

Genetic algorithm, presented by Holland 

[Holland, 1975], is a random research 

technique based on natural mechanism, 

combination and mutation genetic rules. 

Genetic algorithm starts with an initial set of 

random solutions which are named initial 

populations. Each population member is 

called a chromosome, which shows a solution 

for the problem and evolves during iterative 

periods. The population changes in each 

period and creates a new generation which is 

nearer to optimal solution than the previous 

generation. 

 

5.2 Simulated Annealing (SA) 

Algorithm 

In some combined optimization problems 

which require high computing time and have 

wide solution space, using SA is more 

effective.  The main concept of this algorithm 

is derived from physical and thermodynamic 

melting principles. In this way, the 

temperature of a solid body (T) increases till 

it melts, then body temperature reduces 

gradually. In metallurgical engineering 

perspective, this process seeks to put atoms 

together in such a way that the physical state 

of the body forms in the best possible shape. 

The relationship between physical concepts 

and combined optimization is that different 

solutions in combined optimization are 

equivalent to different physical states of a 
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solid body and solution costs are equivalent 

to different energy levels (E). 

5.3 The Proposed Algorithm 

In this research, a hybrid algorithm which is 

the combination of dynamic programming, 

genetic and simulated annealing algorithms is 

presented. The visual representation of the 

proposed hybrid algorithm can be shown in 

Figure 3. 

 

Figure 3. Flow chart of the GA-SA for the 

concerned problem 

 

5.4 Chromosome Displays Mode 

In this part, we intend to display a feasible 

solution mode for the problem. In the 

following, a chromosome is shown for 3 

intermediate depots under specific scenarios. 

As can be seen, the designed chromosome for 

this problem is represented in 3 parts. 

5.4.1 Part 1 

The first part indicates a state in which 

whether an intermediate depot is activated or 

not. It is equal to 1 if the intermediate depot 

is activated and 0, otherwise. The matrix 

dimension is 1*R, in which R represents the 

number of intermediate depots.  

 

5.4.2 Part 2 

The dimension of the matrix belonging to the 

second part is 1*l, in which l represents the 

number of customers. Digit 1 indicates 

intermediate depot activation and digit 0 

indicates intermediate depot inactivation. A 

depot is chosen for each customer among the 

activated depots (in this example 

intermediate depots 1 and 2 are activated). 

 

 5.4.3 Part 3 

Chromosome's third part shows how to meet 

the demand of customers allocated to each 

intermediate depot. In other words, it 

expresses the route and the pattern of 

customers' serving. Considering the first row 

of the previous part of chromosome, 

customers 1, 2,3,5,6 and 7 are allocated to 

intermediate depot 1 based on the dynamic 

algorithm. So the first row of chromosome’s 

third part, which is relevant to the first 

intermediate depot, shows that the sequence 

of customers' serving is that a vehicle moves 

from intermediate depot 1 to customer 3 and 

subsequently to customers 5,6,2,7 and 1, then 

returns to the same depot. 

On the other hand, as can be seen in 

chromosome’s second part, customer 4 is 

allocated to intermediate depot 2. Therefore, 

a vehicle moves from intermediate depot 2 to 

customer 4, and returns to the same depot 

after serving the customer. 
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The third intermediate depot is not activated, 

thus no customer is allocated to this depot. 

 

To determine the optimal vehicles routes, we 

have employed dynamic programming, 

which improves the objective function value 

of initial generated solutions in comparison 

with random mode. 

5.5 Finding the initial solution  

Held and Krap [Held and Krap, 1962] 

proposed a dynamic programming approach 

to solve the sequential problems. Their 

solutions can be applied for scheduling 

problems, the traveling sales man (TSP) 

problem and assembly line balancing 

problems. Their proposed solution method is 

computationally efficient in specifying 

limited range. In addition, the approximate 

solutions might be achieved by solving the 

sequences of small sub-problems which have 

the same structures. 

5.6 Fitness Function  

Fitness function is a criterion to measure the 

quality of solution obtained by the 

chromosome. Each chromosome’s fitness is 

computed based on objective function value 

in the mathematical model, the activation 

cost of each intermediate depot and 

customers' serving costs. 

5.7 Choosing parents 

In this phase, two members of the generated 

population are selected as parents, then a 

crossover operator is applied. The considered 

selection method in the presented algorithm 

is called "racing method" in which P 

members of the population are randomly 

selected. Then, the members, which have the 

best objective function values among these P 

members, are considered as parents.  

5.8 Genetic operators 

After selecting parents, the offspring must be 

generated by applying appropriate operators. 

5.9 Crossover operators 

In this paper, a crossover operator is used, in 

which we generate random numbers for each 

chromosome's first and second parts, and 

then, the crossover operator is applied to 

generate new offspring. Note that the first 

row of chromosome’s second part (i.e. 

customers' allocation to intermediate depots) 

is reliant on chromosome’s first part, this row 

is randomly generated based on initial 

solutions. On the other hand, chromosome's 

third part or routing part, completely depends 

on the first and the second parts. 

Accordingly, after applying crossover 

operator on the first and the second parts, we 

generate the third part based on initial 

generated solution. The following Example 

describes the crossover operator. 

Assume that the first and the second parts of 

parents' chromosomes for a specific scenario 

is as follows: 
 

 

 

Assume that the second part is selected by 

random for crossover operator application, so 

the first part of offspring's chromosome is 

generated as below: 
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Crossover operator is applied for parents under 

each scenario, separately. 

5.10 Permutation Operator 

In this phase, Firstly one population member 

is randomly selected, then a new solution is 

generated by creating a small change in the 

selected member. Permutation operator may 

increase the dispersion of solutions thus the 

searching process. In the presented 

algorithm, permutation operator is applied on 

chromosome’s second part. The first part is 

the first row of chromosome’s second part or 

customer’s allocation to intermediate depots. 

The second part of permutation is applied on 

chromosome’s third part or routing part. 

Two types of permutation operators are used 

in the presented algorithm as follows: 

5.10.1 Swap 

In this method, two genes of the chromosome 

are selected and their places are changed with 

each other. It is assumed that represented 

chromosome in chromosome display part for 

a specific scenario is selected randomly for 

permutation operator. 

Let the second and the fourth parts be 

selected. 
 

 

After changing the digits of places two and 

three, customers' allocation part is changed 

as follows: 

 

 The same must be done for routing part as well. 

5.10.2 Reversion 

In this permutation operator, two genes are 

selected from the chromosome, then digits 

between two genes are re-arranged. In that 

example, points 1 and 3 of intermediate depot 

2 of the chromosome’s third part are selected 

for the reversion permutation operator. 

 

The above part changes as follows, while 

applying permutation operator: 

 

In this way, it can be seen that permutation 

and crossover are the two complementary 

operators. In other words, crossover operator 

impacts on two parts of a chromosome and 

permutation operator has influence on the 

other parts. It must be noted that in each 

permutation, selecting the permutation 

method occurs randomly with equal 

probability. Permutation operator is 

implemented for each scenario separately. 

5.10.2.1 Comparing Generated Solution 

with the Worst Member of Population 

After applying permutation and crossover 

operators and generating new solutions, each 

solution is compared with the worst member 

of initial population and would be replaced 

with the worst solution if it is better; 

otherwise, new solution is replaced with the 

worst existing solution in the population with 

the following probability: 

δ ≤ e−(
∆E
T
)
 

(58) 

∆E =
newsol. Cost − sol. Cost

sol. Cost
 

(59) 
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T=alpha*T (60) 

in which new sol. cost represents objective 

function value of the new generated solution 

and T is the temperature in that iteration 

which reduces as equation (60), and finally  𝛿 

is a uniformly generated number between 0 

and 1. 

5.11 Stop Criterion 

As shown in Table 1, the appropriate values 

of the algorithm parameters are obtained by 

several runes of the algorithm using trial and 

error method. It is worth nothing that the 

considered criterion to stop algorithm is 

maximum number of generations. 
 

Table 1.The algorithm parameters   

 

6. Numerical experiments  

To validate the proposed model and its 

solution approach, several numerical 

examples are investigated.  The problem is 

solved under different 𝛼 values. An analysis 

could be performed to examine the impact of 

changing service level on the network total 

cost. As can be observed in Figure.4, the 

increased value of α leads to the increased 

number of vehicles, which in turn increases 

the network total cost. However, we cannot 

see any changes in the number of vehicles 

when α grows from 0.6 to 0.65 and from 0.95 

to 1. Therefore, the increase of objective 

function value could be possible due to the 

increase of transportation cost imposed by the 

increased value of service level to satisfy the 

fuzzy demands. Accordingly, decision 

makers (DM) need to determine conditions in 

which the demands are satisfied at higher 

confidence level α, however, it imposes 

higher costs on the network. Indeed, the DM 

has to make a tradeoff between cost and 

demand satisfaction to decide on an 

appropriate confidence level. 

 

Figure 4. The impact of different 𝜶 values on 

network total cost 

In the following, we solve the problem in 

three different sizes (i.e. small size with 20 

customers and 5 middle depots, medium size 

with 50 customers and 5 middle depots and 

large size with 100 customers and 5 and 10 

middle depots) and their results are reported 

in Tables 2-4 using different methods 

including genetic algorithm, hybrid genetic 

algorithm, simulated annealing and also the 

combination of genetic and simulated 

annealing algorithms and dynamic 

programming approach. 

The results imply that, on average, the 

combination of genetic and simulated 

annealing algorithms often has better 

performance in comparison with genetic 

algorithm in terms of network costs and CPU 

time. The proposed method which is the 

combination of genetic and simulated 

annealing algorithms and using dynamic 

programming to find initial solution, 

outperforms the three other methods in terms 

of network total cost, however, it increases 

CPU time a bit more. Therefore, a general 

observation confirms high efficiency of the 

proposed algorithm for the problem in 

different sizes. 

The analyses of diagrams in Figure 5 indicate 

that computational time of the proposed 
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hybrid algorithm increases as the service 

level 𝜶 is enhanced from 0.5 to 1, while 

genetic algorithm has a better performance in 

this situation since it reduces the 

computational time on average. On the other 

hand, the results, which is shown in Figure 6, 

represent the domination of the proposed 

hybrid algorithm performance over the three 

other methods in terms of network costs. As 

can be observed, genetic algorithm has the 

weakest performance among the algorithms. 

Moreover, although the combination of 

genetic algorithm and dynamic programming 

approach increases the computational time, it 

can result in the decreased network costs. As 

can be seen in Figure 7, in the problem of 

medium size, the computational time for 

solving the problem by genetic algorithm 

increases from 16 to 20 minutes as the value 

of 𝛼 grows from 0.5 to 1, while the CPU time 

for the proposed hybrid algorithm decreases 

from 21 minutes at confidence level 0.5 and 

reaches 20 minutes at 𝛼 = 1. Other two 

methods do not show specific patterns in 

computational length of time. Figure 8 

depicts the efficiency of the proposed hybrid 

algorithm among other three methods in 

which the lowest level of cost is achieved by 

applying this algorithm. Furthermore, genetic 

algorithm has the worst performance and 

other two algorithms perform quite similarly 

in terms of network costs. 

 

Table 2. Detailed results for Prodhon's instances in small size 

 

     Genetic algorithm Genetic + Dp  Hybrid algorithm Hybrid + DP 

 
Central 

depot 

Middle 

depot 
Customer 𝛼 Cost 

CPU 

Time 
Cost 

CPU 

Time 
 Cost 

CPU 

Time 
Cost 

CPU 

Time 

20-5-1-2e 1 5 20 0.5 22575 15 22372 17  22446 14 22155 15 

20-5-1-2e 1 5 20 0.75 24547 15 24413 18  24179 14 23687 17 

20-5-1-2e 1 5 20 1 25487 14 25179 18  25145 12 24927 16 

Avg     24203 15 23988 18  23923 13 23590 16 

20-5-1b-2e 1 5 20 0.5 22059 13 21796 15  21881 13 21391 16 

20-5-1b-2e 1 5 20 0.75 24296 15 24091 15  24096 14 23696 15 

20-5-1b-2e 1 5 20 1 25436 13 25244 15  25163 15 24843 19 

Avg     23930 14 23710 15  23713 14 23310 17 

20-5-2-2e 2 5 20 0.5 22235 14 21897 16  22035 12 21685 15 

20-5-2-2e 2 5 20 0.75 24745 14 24324 18  24435 13 23884 16 

20-5-2-2e 2 5 20 1 25447 15 25151 17  25292 12 24793 16 

Avg     24142 14 23790 17  23920 12 23454 16 

20-5-2b-2e 2 5 20 0.5 22353 13 22148 17  22049 13 21828 15 

20-5-2b-2e 2 5 20 0.75 24189 13 24078 15  24030 12 23694 15 

20-5-2b-2e 2 5 20 1 25306 12 24956 17  25134 15 24631 15 

Avg     23949 13 23727 16  23737 13 23369 15 

 



 
A Hybrid Algorithm for a Two-Echelon Location-Routing Problem with …. 

International Journal of Transportation Engineering,    76 
Vol.5/ No.1/ Summer 2017 

 

Figure 5. The comparison of CPU time performance in a small-size problem 

 
Figure 6. The comparison of cost performance in a small-size problem 

Table 3. Detailed results for Prodhon's instances in Medium size 

     Genetic algorithm Genetic with Dp Ga-SA GA-SA with DP 

 
Central 

depot 

Middle 

depot 
Customers 𝛼 Cost 

CPU 

Time 
Cost 

CPU 

Time 
Cost 

CPU 

Time 
Cost 

CPU 

Time 

50-5-1-2e 1 5 50 0.5 42316 19 41368 22 41598 15 39737 18 

50-5-1-2e 1 5 50 0.75 44872 17 43967 17 44203 20 42942 22 

50-5-1-1e 1 5 50 1 47045 22 46455 19 46329 18 45152 20 

Avg     44744 19 43930 19 44043 18 42610 20 

50-5-1b-2e 1 5 50 0.5 40617 15 39859 19 39968 15 38504 22 

50-5-1b-2e 1 5 50 0.75 43916 18 43041 19 43230 19 41620 20 

50-5-1b-1e 1 5 50 1 46390 19 45763 21 45649 16 43691 21 

Avg     43641 17 42888 20 42949 17 41271 21 

50-5-2-2e 2 5 50 0.5 41165 16 40313 18 40589 16 38315 20 

50-5-2-2e 2 5 50 0.75 43481 15 42921 22 42824 18 41640 20 

50-5-2-2e 2 5 50 1 45636 18 45126 22 45034 15 43769 18 
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Avg     43427 16 42877 21 42816 16 42241 19 

50-5-2b-2e 2 5 50 0.5 41655 16 41079 17 41152 16 39855 24 

50-5-2b-2e 2 5 50 0.75 44528 20 43765 21 43960 16 42039 21 

50-5-2b-2e 2 5 50 1 45295 17 44333 20 44641 18 42408 18 

Avg     43826 18 43059 19 43251 17 41434 21 

50-5-2bBIS-

2e 
2 5 50 0.5 40687 18 39710 21 39986 16 38057 20 

50-5-2bBIS-

2e 
2 5 50 0.75 44519 16 43856 17 43963 16 42486 20 

50-5-2bBIS-

2e 
2 5 50 1 47441 21 46644 17 46690 20 45421 20 

Avg     44215 18 43403 18 43546 17 41988 20 

50-5-2BIS-2e 2 5 50 0.5 41926 15 41156 20 41435 16 39551 22 

50-5-2BIS-2e 2 5 50 0.75 44482 16 43709 17 43755 15 41867 20 

50-5-2BIS-2e 2 5 50 1 45525 20 44588 21 44947 16 43185 20 

Avg     43977 17 43151 19 43379 16 41534 20 

50-5-3-2e 3 5 50 0.5 41453 17 40613 20 41028 16 39226 19 

50-5-3-2e 3 5 50 0.75 44488 19 43789 17 43961 20 42055 21 

50-5-3-2e 3 5 50 1 45490 20 44909 17 45066 16 43822 22 

Avg     43810 19 43103 18 43352 17 41701 21 

50-5-3b-2e 3 5 50 0.5 40455 15 39937 21 39748 16 38606 20 

50-5-3b-2e 3 5 50 0.75 43211 17 42504 17 42485 19 40914 23 

50-5-3b-2e 3 5 50 1 46988 21 46037 17 46251 17 44397 24 

Avg     43551 18 42826 18 42828 17 41306 22 

 

 
Figure 7. The comparison of CPU time performance in a medium-size problem 
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Figure 8. The comparison of cost performance in a medium-size problem 

 

Table 4. Detailed results for Prodhon's instances in large size 

     Genetic algorithm Genetic with Dp Ga-SA GA-SA with DP 

 
Central 

depot 

Middle 

depot 
Customers 𝛼 Cost 

CPU 

Time 
Cost 

CPU 

Time 
Cost 

CPU 

Time 
Cost 

CPU 

Time 

100-5-1-2e 1 5 100 0.5 90528 83 86731 102 87645 93 82346 108 

100-5-1-2e 1 5 100 0.75 96969 85 94613 102 94373 88 89592 96 

100-5-1-2e 1 5 100 1 97934 90 94843 102 95258 81 91208 96 

100-5-1b-2e 1 5 100 0.5 90710 82 88474 96 88684 88 84361 102 

100-5-1b-2e 1 5 100 0.75 96718 82 93999 92 94626 87 89401 98 

100-5-1b-2e 1 5 100 1 98297 91 94824 95 95709 90 90542 102 

100-5-2-2e 2 5 100 0.5 90832 91 86855 102 87037 94 83062 108 

100-5-2-2e 2 5 100 0.75 96571 89 94458 103 93560 92 89091 97 

100-5-2-2e 2 5 100 1 97050 87 93926 98 93557 90 89900 108 

100-5-2b-2e 2 5 100 0.5 93105 81 90025 102 90712 91 86902 98 

100-5-2b-2e 2 5 100 0.75 96027 84 92983 105 92504 83 89402 98 

100-5-2b-2e 2 5 100 1 98685 80 96317 91 96665 91 92009 108 

100-5-3-2e 3 5 100 0.5 92869 88 89455 96 90683 89 84894 103 

100-5-3-2e 3 5 100 0.75 95355 80 92683 98 92093 87 88948 95 

100-5-3-2e 3 5 100 1 98118 85 94923 91 96022 94 90424 99 

100-5-3b-2e 3 5 100 0.5 90260 83 86261 93 87645 93 82586 105 

100-5-3b-2e 3 5 100 0.75 95797 92 93446 104 93618 94 90269 105 

100-5-3b-2e 3 5 100 1 98709 86 96109 92 95373 95 01207 98 

100-10-1-2e 1 5 100 0.5 123233 115 116719 113 119670 112 105960 118 

100-10-1-2e 1 5 100 0.75 126105 112 121261 112 122373 106 112010 119 

100-10-1-2e 1 5 100 1 128513 111 124371 110 124614 116 114566 120 

100-10-1b-2e 1 5 100 0.5 124166 113 117949 120 119704 113 106923 117 

100-10-1b-2e 1 5 100 0.75 126959 110 122268 111 122345 107 110343 115 

100-10-1b-2e 1 5 100 1 127828 111 122782 119 122900 115 113009 124 

100-10-2-2e 2 5 100 0.5 121991 108 115128 113 118716 107 105045 120 

100-10-2-2e 2 5 100 0.75 126099 109 119965 113 122091 106 109011 120 

100-10-2-2e 2 5 100 1 127985 110 122631 120 124901 121 112636 116 

100-10-2b-2e 2 5 100 0.5 123749 112 119654 119 119075 107 108214 124 

100-10-2b-2e 2 5 100 0.75 125661 111 119787 117 121682 110 110094 119 

100-10-2b-2e 2 5 100 1 128390 105 123668 118 123444 123 113988 119 

100-10-3-2e 3 5 100 0.5 124176 107 119106 115 120899 112 107672 121 

100-10-3-2e 3 5 100 0.75 126239 113 120467 118 121485 107 110257 125 

100-10-3-2e 3 5 100 1 128946 112 122801 110 125568 118 112757 125 

100-10-3b-2e 3 5 100 0.5 121612 108 115624 114 117435 110 106567 116 

100-10-3b-2e 3 5 100 0.75 125721 111 119740 117 122015 114 110374 123 

100-10-3b-2e 3 5 100 1 127655 115 121086 114 123321 116 11721 125 

200-10-1-2e 1 10 200 0.5 174067 154 168323 154 168075 147 155676 161 
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200-10-1-2e 1 10 200 0.75 182085 151 172672 160 176259 140 159064 155 

200-10-1-2e 1 10 200 1 187467 144 181091 149 181713 152 170151 163 

200-10-1b-2e 1 10 200 0.5 176669 141 167170 146 169890 145 154540 159 

200-10-1b-2e 1 10 200 0.75 184859 152 178434 156 178004 148 163401 164 

200-10-1b-2e 1 10 200 1 192845 140 184261 156 187094 154 173838 164 

200-10-2-2e 2 10 200 0.5 179338 154 172086 159 172000 152 158174 150 

200-10-2-2e 2 10 200 0.75 184940 148 176574 158 177402 144 159917 163 

200-10-2-2e 2 10 200 1 193829 143 187412 153 189361 149 176823 160 

200-10-2b-2e 2 10 200 0.5 178110 146 172082 157 171671 152 157737 157 

200-10-2b-2e 2 10 200 0.75 184321 150 175999 151 177437 155 160942 163 

200-10-2b-2e 2 10 200 1 194138 151 184657 155 186879 154 173510 153 

200-10-3-2e 3 10 200 0.5 174845 140 165346 149 168546 150 152575 160 

200-10-3-2e 3 10 200 0.75 181944 154 176330 152 177870 155 163530 155 

200-10-3-2e 3 10 200 1 190538 151 181450 149 185284 155 169181 160 

200-10-3b 3 10 200 0.5 177568 145 168755 153 172264 142 155968 158 

200-10-3b 3 10 200 0.75 182274 140 175238 153 175575 144 159415 159 

200-10-3b 3 10 200 1 190989 154 184039 147 186004 148 171927 151 

Avg     135007 115 129590 122 130728 117 116919 127 

 

 

6.1 The Validation of Proposed 

Solution Approach 
 

To evaluate the performance of the proposed 

hybrid solution approach several small-size 

instances have been investigated in this section 

and the respective results are reported in Table 5. 

As can  be observed, for instances 1 and 2, the 

results obtained from solving the concerned 

problem by the proposed hybrid solution method 

are the same as the ones obtained by the exact 

solver GAMS while having remarkably less 

computing time. However, for instances 3-5, the 

proposed solution approach achieves the 

solutions with small gap in comparison to the 

ones obtained by GAMS. For the problem in 

larger size the exact solver could not achieve a 

solution in reasonable length of time while the 

proposed algorithm performs well as the problem 

gets larger. 

6.2 Sensitivity Analysis on The 

Confidence Level  

This section aims to investigate the changes in the 

number of depots by varying service level α. To 

this aim the problem is solved for instances with 

20 customers (small size) and 50 customers 

(medium size), as shown in Figures 9 and 10. A 

general observation is that the number of required 

depots increases as the service level enhances. 

Better to say, satisfying higher percentage of 

customers' total demand generally utilizes the 

current capacities of existing depots. As long as 

the capacities of current depots are adequate to 

respond customer's demands, no more depots will 

be required. However, the pattern will change if 

the existing depots cannot be responsible for 

satisfying customers' demand at the desired level. 

In such situation, more depots will be added to the 

current ones so that the desired satisfaction level 

is met. 

As can be seen in Figure 11, the required number 

of middle depots will enhance from 2 to 4 as the 

confidence level increases from zero to 1 in small 

size. Similarly, the same pattern will be noticed 

in Figure 12 and the required number of middle 

depots will reach 5 under confidence level 1 in 

medium-size problem. 

Another analysis could be performed to observe 

the changes in the number of required vehicles as 

a result of increasing the confidence level. To do 

so, as can be seen in Figures 11 and 12, the 

problem is solved in both small and medium 

sizes, respectively, under a number of confidence 

levels. The results imply that the number of 

vehicles which are required to satisfy customers' 

demands will increase when the confidence level 

enhances. This finding can be observed in the 
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following figures as well. For example, in small-

size problem, the number of required vehicles 

changes from 4 to 7 as the confidence level 

increases from 0 to 1. With similar pattern, the 

number of required vehicles increases from 9 to 

12 as a result of increasing the confidence level 

from 0 to 1 in medium size. 

6.3 Sensitivity Analysis on The 

Capacity of Vehicles  

In this section, we analyze the impact of changes 

in the capacity of vehicles on the cost 

performance of the network. Figures 13 and 14 

depict network cost reduction over different 

capacity levels for medium-size problem at 

confidence levels α = 0.7 and𝛼 = 0.9, 

respectively. As can be observed in the following 

diagrams, the increased capacity of vehicles 

results in decreased network costs. In some parts, 

however, the curve is steeper which shows 

reduced network costs and thus increased cost 

savings caused by the reduced transportation cost 

in total since the frequency of transportation 

decreases when the capacity of vehicles is 

increased. For instance, at confidence level 0.7, 

as the increase in capacity level reaches 5%, the 

amount of cost savings will become about 0.4% 

while this amount of savings will be 1.2% when 

the capacity increases to 30%. Consequently, 

these levels can be noticed as appropriate points 

for making a considerable reduction in network 

costs, however, choosing the level of capacity 

increase based on the decision makers' policies. 

In some parts, however, the slope of the curve 

will decrease little by little until it comes to zero 

and no changes would be seen as the capacity is 

increased, which means that no capacity shortage 

has occurred. In other words, the current capacity 

of vehicles can satisfy the desired amount of 

demands. Moreover, by increasing the service 

level from 0.7 to 0.9 the amount of cost savings 

will decrease resulting from the increase in 

network costs. 

Table 5. summary of results (exact solver versus the proposed hybrid approach) 

Instance 

no. 

Central 

depot 

Middle 

depot 

customer Network cost CPU time (s) 

GAMS Hybrid 

algorithm 

GAMS Hybrid 

algorithm 

1 1 2 5 11516 11516 328 12 

2 1 3 8 12154 12154 391 14 

3 1 4 10 12721 12793 407 15 

4 1 5 12 15307 15391 364 15 

5 1 5 15 17914 17973 312 13 

 
Figure. 9. The required number of middle depots under different confidence levels in small size (20-5-1-2e) 
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Figure 10. The required number of middle depots under different confidence levels in medium size (50-5-1-

2e) 

  

Figure 11. The required number of vehicles  under different confidence levels in small size (20-5-1-2e) 

 

Figure 12. The required number of vehicles  under different confidence levels in medium size (50-5-1-2e) 
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Figure 13. The impact of vehicle capacity changes on cost performance; 𝜶 = 𝟎. 𝟕 

 

 

Figure 14. The impact of vehicle capacity changes on cost performance; 𝜶 = 𝟎. 𝟗 

 

7. Conclusions and Future 

Research Direction 

This paper presents a mixed integer programming 

model for a two-echelon location-routing 

problem with simultaneous pickup and delivery. 

To come closer to reality, the amount of demands 

are considered to be a fuzzy parameter. To handle 

the demand uncertainty, a fuzzy programming 

approach based on the credibility theory is 

devised. A hybrid algorithm based on genetic 

algorithm (GA) and simulated annealing (SA) 

algorithm is tailored to solve the proposed model. 

The results achieved from solving the problem in 

different sizes imply that the proposed hybrid 

algorithm outperforms other algorithms within 

reasonable length of time. The domination of 

proposed hybrid algorithm over the other 

investigated algorithms even strengthens when 

the size of problem becomes larger. Noteworthy, 

a comprehensive sensitivity analysis has been 

performed and several valuable insights have 

been extracted as follows. (1) our findings from 

the sensitivity analysis of changes in the capacity 

of vehicles on the network costs imply that an 

appropriate increase in the capacity of vehicles 

can be devised as a strategy to decrease the total 

cost of network. For example, if the capacity of 

vehicles is increased up to %10, the system's cost 
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savings will reach nearly %2. (2) fuzzy chance-

constrained programming approach provides a 

confidence level for satisfying the demands such 

that the number of required vehicles and middle 

depots to satisfy customer's demands enhances as 

the confidence level increases. (3) an increase in 

credibility level would result in increasing total 

cost, thus, decreasing the cost savings of the 

network. (4) in comparison to genetic algorithm, 

the proposed hybrid solution approach generally 

improves the computing time in small, medium 

and large sizes of the problem. (5) using a mixed 

approach of dynamic programming and GA or 

hybrid approaches will increase the total 

computing time. A series of future research can 

be extended in this subject of investigation. For 

instance, scenario reduction methods could be 

used to reduce the problem size in large 

dimensions. Furthermore, using clustering 

methods could decrease the computing time and 

the problem complexity. Other heuristic 

algorithms can be applied to solve the problem 

and compare the corresponding results with the 

ones obtained by the proposed algorithm. 

Researchers could also investigate the problem 

over a multi period planning horizon considering 

inventory problem for intermediate depots and 

customers. A number of approaches such as 

robust optimization could be devised to handle 

the data uncertainties. 
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