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Abstract 
The blood supply chain as a part of a healthcare system plays a substantial role in improving health within 
societies and supplying blood for daily needs. Specifically in disaster condition, blood supply is the 
challenge requiring more attention. This paper presents a fuzzy-stochastic mixed integer linear 
programming model to design blood supply chain network for disaster relief. To deal with uncertainty in 
the model parameters, a fuzzy programming approach is considered, and the combination of the expected 
value and the chance constrained programming is applied to solve the proposed model. Besides, a real case 
study in Iran is implemented to illustrate the applicability of the model. The results imply that an appropriate 
adjustment in the capacity and coverage radius of blood facilities, a decrease in the disruption probability 
of facilities and transportation routes as well as referral rate, can be applied as strategies to improve the 
supply chain costs. 
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1. Introduction  
Rapidly increasing healthcare costs, especially in 
developing countries, have impeded health 
systems to improve their performance. Since 
blood supply chains (BSCs) as parts of healthcare 
systems play a key role in contributing to health 
improvement within societies, improving service 
quality besides reducing costs of the BSC is of 
great significance [Cheraghi, Hosseini-Motlagh 
and Ghatreh-Samani, 2017; Riahi, Hosseini-
Motlagh and Teimourpour, 2013]. Blood is one 
of the most critical products in healthcare, for 
which no alternatives have been found so far 
despite medicines development. Although blood 
availability in both regular healthcare treatment 
and emergency cases is so critical, blood donation 
rate varies in each country. In the US, for 
instance, only 10% of the qualified people donate 
blood. However, the rate is even less in 
developing and low-income countries according 
to WHOi. As a result, blood supply and demand 
conformity requires the infrastructure 
development in collection, production and 
distribution of blood. Moreover, satisfying 
demand and minimizing costs and wastages are 
regarded as the chain preferable targets.    

BSC and disaster management have become the 
two popular research fields in recent decades due 
to the increasing number of disasters. According 
to the related studies by IFRCii, around 71,800 
disasters occurred in the world from 2000 to 2010 
by which around a million were killed, and over 
2,550 million were injured [Chester, 1995]. A 
part of this loss is directly owing to the disaster 
itself, while the rest concerns the deficiency of 
management as well as the supply of blood and 
other relief items. Thus, the necessity of an 
appropriate BSC network is perceived more than 
ever. 

After the disasters happen (i.e., post-disaster 
phase), the affected people will demand food, 
shelters, healthcare equipment and other critical 
requirements that the most significant one is 
blood, which is considered as a scarce and vital 
commodity in healthcare. Accordingly, the 
proper supply of blood is regarded as the 
challenge that governments' healthcare systems 

always face with [Beliën and Forcé, 2012]. Blood 
donation has no specific pattern and usually 
occurs in an irregular basis. In addition, the 
imprecise demand of blood besides the diversity 
of blood products with limited and different shelf 
lives; e.g., platelets, as the most perishable blood 
component and plasma as almost non-perishable 
one, imposes more complexity on BSCs [Rytila 
and Spens, 2006]. Moreover, any shortages are 
too costly, and may even lead to death. Blood 
donation takes place while referring to either 
mobile or permanent blood facilities. All blood 
quantities, drawn from the donors, are then 
temporarily transferred to regional facilities 
which account for testing and delivering blood 
products to hospitals and healthcare centers as 
soon as they are in need.  

Generally, a BSC, which is composed of blood 
collection and production as well as inventory 
control and distribution processes, requires to 
make strategic, tactical and operational decisions, 
respectively for facility location, needed before 
the disaster occurrence, and inventory 
management besides blood distribution in post-
disaster phase. Therefore, an efficient 
comprehensive BSC design especially in disaster 
condition, is of an importance to the chain 
improvement. 

Papers on BSCs are mostly presented while 
accounting for deterministic condition, and only 
a few papers have studied the chain in disaster 
condition. Accordingly, we aim to investigate a 
BSC model in disasters considering uncertainty 
in model parameters to make the situation more 
realistic. 

The inevitable uncertainty of critical data is a 
significant issue while designing a BSC network 
in disasters through optimization models. In 
large-scale real problems such as disasters or 
emergency cases, not enough data may be 
available or easy to access. In such occasions, 
parameters including demand amount, costs, and 
travel times are involved with uncertainty. Thus, 
it is of specific importance to consider these 
uncertain parameters in our model. Randomness 
and fuzziness are the two main types of 
uncertainty. Randomness is originated from 
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random (chance) nature of data. In such case, 
probability distributions (either discrete or 
continuous) can be estimated by using available 
sufficient historical data. Moreover, this type of 
uncertainty can be modeled through stochastic or 
robust programming approaches whether the 
random distributional information is available or 
not. Besides, stochastic programming approach is 
preferred only if an action is repeated several 
times over the planning horizon [Tofighi, Torabi 
and Mansouri, 2016]. However, these conditions 
do not hold in some cases like disasters in which 
the shortage of historical data and no repetition of 
a disaster occurrence during the planning horizon 
withhold us from modeling uncertain parameters 
as random data. In such occasions, we encounter 
imprecise parameters in the sense that we have no 
knowledge about their precise values. Indeed, it 
implies the epistemic uncertainty (an inherent 
impreciseness) in these parameters [Kabak and 
Ülengin, 2011] for which it is almost impossible 
to guess the probability distributions. In this 
situation, using fuzzy concept, reasonable 
estimations for these epistemic uncertain 
parameters will be provided based on the field 
experts' professional opinions. Thus, as a 
complement to the probability theory, we can 
formulate these parameters via the possibility 
theory. To this end, we first adopt a possibility 
distribution (i.e. trapezoidal or triangular fuzzy 
numbers) for each imprecise parameter, then an 
appropriate fuzzy-stochastic programming 
approach is applied to cope with the parameters 
epistemic uncertainty [Torabi and Hassini, 2008].   

In this paper, we devise a hybrid uncertainty 
programming approach based on two-stage 
stochastic programming and fuzzy programming 
to handle inherent random and epistemic 
uncertainties in critical input data while designing 
a BSC network for disaster relief.  

The reminder of the paper is classified into 7 
sections. The related literature to disaster 
management and BSCs as well as BSC in 
disasters is reviewed in Section 2. Section 3 is 
dedicated to problem definition and model 
formulation. The combination of the expected 
value and the chance constrained programming is 
developed in Section 4 to solve the proposed 

model. In Section 5, we apply a real case study to 
evaluate the efficiency and applicability of the 
proposed model, and the corresponding results 
are reported in Section 6. Finally, the conclusion 
remarks and possible future research directions 
comprise Section 7. 

2. A Review of Related Literature  
In this section, we first briefly review the related 
papers to blood supply chain network design. 
Furthermore, Papers on disaster management are 
then reviewed and BSC in disasters is 
investigated by the relevant papers at the end.   

The study of BSC management started in 1960s. 
According to the related surveys, one developed 
by Beliën, and Forcé [Beliën and Forcé, 2012] 
and another by Osorio, Brailsford and Smith 
[Osorio, Brailsford and Smith, 2015], papers on 
this field of interest can be classified into diverse 
ranges based on different criteria such as type of 
blood products, type of problems and the decision 
levels, solution methods and practical 
implementation. In an effort, an optimization 
model for donors' allocation to blood centers was 
proposed by Pierskalla and Roach [Pierskalla and 
Roach, 1972] by which the optimal numbers and 
location of blood centers as well as the 
coordination between supply and demand points 
are determined. In another effort, a bi-objective 
integer mathematical model for blood bank 
location-allocation problem in the Turkish Red 
Crescent Society was outlined by Şahin, Süral 
and Meral [Şahin, Süral and Meral, 2007]. The 
objective functions aim at minimizing the 
weighted traveled distance and the number of 
blood terminals as well as maximizing the 
covered population. Nagurney and Masoumi 
[Nagurney and Masoumi, 2012] presented an 
optimization bi-objective mathematical model 
including the location of collection facilities, 
laboratories and distribution centers to obtain the 
optimal allocation while minimizing the total 
supply risk and costs including operating cost as 
well as depot penalty and shortage costs over a 
single-period planning horizon. Arvan, 
Tavakkoli-Moghaddam and Abdollahi [Arvan, 
Tavakkoli-Moghaddam and Abdollahi, 2015] 
worked on a bi-objective model to design the 
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BSC network considering laboratories, blood 
bank centers, hospitals and donation zones. The 
objectives were considered as minimizing 
operating and transportation costs as well as 
blood products expiration. They applied ߝ-
constraint approach to solve the proposed model 
in which all parameters are considered to be 
deterministic. In another work, Zahiri et al. 
[Zahiri et al., 2015] developed an integer 
programming model for blood collection 
management under uncertainty. They applied a 
fuzzy-robust approach, and implemented a case 
study of Babol. The required decisions were 
made in two phases, such that the location of 
mobile and permanent blood facilities was 
determined in strategic phase, and the allocation 
of donors was then decided in tactical phase. 

Disaster management totally consists of four 
stages including mitigation, preparedness, 
response and recovery [Sheu, 2007]. Some papers 
have considered the problem as a two-stage 
model due to uncertainty in demand. Decisions 
are normally made deterministically at the first 
stage and the results are transferred to the next 
one. Huang, Smilowitz and Balcik [Huang, 
Smilowitz and Balcik, 2012] studied a two-stage 
network design mathematical model for disaster 
preparedness and response phases. Demand and 
vehicles capacities are taken into account as 
stochastic parameters. At the first stage, the 
capacity and location of each facility besides 
relief items supplies are determined, and the 
quantity of satisfied demand at each demand zone 
as well as shortage level in each facility is then 
specified at the second stage. The problem has 
been formulated as a single-objective model 
while minimizing the establishment cost of 
facilities, relief items supply and shortage costs. 
A mathematical model was analyzed by Noyan 
[Noyan, 2012] to specify the location and 
inventory level of relief distribution centers in 
mitigation phase. Demand and supply of relief 
items as well as the capacity of facilities are 
considered as imprecise parameters. Besides, the 
network costs are to be minimized through the 
single-objective model. A robust optimization 
model for earthquake response phase was 
presented by Najafi, Eshghi and Dullaert [Najafi, 

Eshghi and Dullaert, 2013]. They worked on a 
multi-objective model to minimize unsatisfied 
demand, the number of disregarded injured and 
vehicles used, in which demand and supply of 
relief items besides the number of injured are 
inexplicit parameters. They also applied a related 
case study to the problem in Iran to illustrate the 
applicability of their model. Chakravarty 
[Chakravarty, 2014] proposed a two-stage model 
for preparedness and response phases to decide 
on time and quality of relief distribution in 
disasters. In this model, response time and excess 
demands are to be minimized as the objectives, in 
which the disaster severity, cost structure and 
demand of relief resources are regarded 
stochastic. The inventory level in each supply 
point is specified at the first stage, and the 
quantity of supply and response time are then 
determined at the second stage. Tofighi, Torabi 
and Mansouri [Tofighi, Torabi and Mansouri, 
2016] worked on a two-echelon humanitarian 
logistics network design for earthquake 
preparation in Tehran while dealing with both 
pre- and post-disaster logistical problems. They 
proposed a novel mixed possibilistic two-stage 
scenario-based stochastic programming approach 
to cope with the epistemic uncertainty of the 
problem. The locations of facilities including 
central warehouses and local distribution centers 
besides the amount of inventory prepositioned for 
relief supplies are specified in the first stage with 
respect to the uncertainty in supply and demand 
data along with the transportation routes 
availability while an earthquake occurs. Planning 
for relief distribution is provided during the 
second stage under different disaster scenarios to 
minimize total delivery time, total cost of 
inventory surplus, the maximum delivery time for 
critical relief items and shortage cost resulting 
from unsatisfied demand. They applied the 
weighted augmented ߝ-constraint method to solve 
the proposed multi-objective model and 
developed a tailored differential evolution (DE) 
algorithm to obtain efficient solutions within a 
reasonable length of time. 

In an effort, a dynamic multi-period model was 
developed by Sha and Huang [Sha and Huang, 
2012] for blood supply in Beijing after earthquake 
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occurrence. The model was applied to optimize the 
location-allocation of temporary blood facilities by 
minimizing the total costs of facilities 
establishment and repositioning besides operating 
and shortage costs over the planning horizon, 
regardless to uncertainty in blood supply. In 
another work, an MILP stochastic model for BSC 
in emergency condition was proposed by Jokar and 
Hosseini-Motlagh [Jokar and Hosseini-Motlagh, 
2015]. Their model aimed to optimize the network 
total cost including blood wastage and shortage 
costs. They considered the capacity of mobile 
blood facilities as a variable, and determined the 
optimal service area and number of blood facilities 
with respect to different disaster scenarios. Their 
results proved that changes in the capacity of 
mobile blood facilities can affect the optimal 
number of mobile as well as permanent facilities. A 
bi-objective model was proposed by Fahimnia et al. 
[Fahimnia et al., 2015] to determine the optimal 
way of blood distribution to hospitals and minimize 
the average delivery time from local and regional 
blood centers to hospitals. They applied ߝ-
constraint method to formulate the proposed 
model, and solved it using Lagrangian relaxation. 
Table 1 classifies the reviewed papers according to 
their special features. 

Since only a few papers have studied blood supply 
chain network design in disasters, we intend to 
investigate the mentioned network under 
uncertainty by taking the imprecise parameters into 
account.    

This paper contributes to the area by: 1) Employing 
a fuzzy two-stage stochastic programing approach 
to formulate the model in disaster condition and a 
credibility-based chance-constrained programming 
method to solve the proposed fuzzy-stochastic 
model. 2) Considering disruption probability 
feature for local and regional blood facilities and 
each route between facilities. 3) Developing a BSC 
network that synthesizes blood donors and mobile 
blood facilities as well as local and regional blood 
centers and demand zones. 4) Applying a real case 
study to evaluate the performance and efficiency of 
the proposed model. 

 

3. Problem Description and Model 
Formulation   

The considered supply chain consists of blood 
donors, mobile and local blood facilities and 
regional blood centers as well as demand zones 
such as healthcare centers and hospitals. Blood can 
be donated at either a mobile or a local blood 
facility except for the regional blood centers. Each 
mobile blood facility might move from one 
location to another in each period. The blood units 
collected by mobile facilities is transferred to either 
local or regional blood centers. All transfusion 
services are provided by regional blood centers, but 
not by local ones. In this regard, ߮ percent of the 
processes of a local center must be referred to a pre-
determined regional blood center defined as the 
referral rate. Finally, the local blood facilities along 
with the regional blood centers account for 
delivering blood to the specified demand zones. 
Additionally, each route has certain reliability to be 
working, and the disruption probability of each 
facility has been taken into account. A schematic 
plan of the concerned BSC is depicted in Figure 1. 

The problem is formulated as a two-stage fuzzy-
stochastic model applying a number of disaster 
scenarios to design a BSC network in disasters in 
which all parameters are considered to be 
imprecise.   

In a two-stage programming approach, two 
categories of decision variables could be defined 
[Birge and Louveaux, 2011]. The first category 
belongs to the first-stage decision variables and the 
second one is associated with the second-stage 
decision variables. The first category variables do 
not rely on the disaster scenarios and can be 
determined before a scenario realization, while the 
second-stage decision variables are scenario-
dependent and thus are made after a scenario is 
realized. In the considered model, the value of 
decision variable Y, which represents the number 
of mobile blood facilities, would be taken in the 
first stage since it is a scenario-independent 
variable. On the other hand, the rest of decision 
variables are specified in the second stage as their 
values are reliant on the disaster scenarios.
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Reference   

Hierarchical level 
Disaster 
condition Modelling approach 

Uncertainty  Solution method Time period 
Case 
study Supply 

chain level 
Collection 
echelon  Fuzzy  Stochastic/

Robust exact (Meta) 
heuristic 

Single- 
period 

Multi-
period 

Şahin, Süral and Meral (2007)    No  Mixed integer linear 
programing         No  

Nagurney and Masoumi 
(2012)    No  Linear programing       No  

Huang, Smilowitz and Balcik, 
(2012)    Yes  Mixed integer linear 

programing         No  

Noyan (2012)   Yes  Risk-averse two-stage 
stochastic programming        Yes  

Sha and Huang (2012)    Yes  Mixed integer non-linear 
programing        Yes  

Najafi, Eshghi and Dullaert  
(2013)    Yes  Robust programming         Yes  

Chakravarty (2014)   Yes  Two-stage stochastic 
programming         No  

Jokar and Hosseini-Motlagh 
(2015)     Mixed integer linear 

stochastic  programing        No  

Arvan, Tavakkoli-
Moghaddam and Abdollahi, 
(2015) 

   No  Mixed integer non-linear 
programing       No  

Zahiri et al. (2015)    No  
Mixed integer non-linear 
programing / Robust 
possibilistic 

       Yes  

Fahimnia et al. (2015)    Yes  Two-stage stochastic 
programming         No  

Tofighi, Torabi and 
Mansouri, (2016)    Yes  

Mixed possibilistic two-stage 
scenario-based stochastic 
programming 

      No  

Our paper    Yes  Mixed integer linear 
programing       Yes  

Table 1.  Classification of the reviewed papers 
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The objective function aims to minimize the total 
cost of supply chain including establishing and 
moving costs of each mobile blood facility and 
operating cost at both local blood facilities and 
regional blood centers as well as inventory 
holding cost and transportation cost. The 
following values are obtained through solving the 
proposed model: 

1. The optimal number and location of mobile 
blood facilities based on different scenarios. 

2. The number of blood units collected by each 
facility under each scenario in each period. 

3. The number of blood units transported from 
mobile facilities to local and regional blood 
centers based on each scenario in each period. 

4. The number of blood units shipped from 
local blood centers to regional blood centers 
based on each scenario in each period. 

5. The level of blood inventory at both local 
and regional blood centers based on each 
scenario at the end of each period.  

6. The amount of blood shipped from local and 
regional blood centers to healthcare centers 
and hospitals based on each scenario in each 
period. 

3.1.Model Sets, Parameters and Decision Variables 
The following components are applied to formulate the proposed fuzzy-stochastic model. 
Indices: 

   donor group thdThe set, assigned to the  ܦ
B The set, assigned to candidate locations for bth mobile blood facility 
L The set, assigned to lth local blood center 
G The set, assigned to gth regional blood center 
P The set, assigned to pth hospital or healthcare center 
S The set, assigned to sth disaster scenario 
T The set, assigned to tth time period 

 

Distributio
n 

Collection Production & Inventory 

Established fobile flood facility Candidate location for mobile blood facility 

 

Regional blood center 

Local blood facility Demand zones 

Group of donors 

1 

2 

3 

4 

|d| 

|D| 

1 
1 

1 

2

|B| 

|L| 

2 

|G| 

1 

2 

3 

4 

|p| 

|P| 

Figure 1. An overview of the concerned blood 
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Technical parameters: 

݀݁௣௧௦ Demand of blood at pth hospital in period t under sth scenario 

ܸ Capacity of each mobile blood facility 

௟ݒ
ᇱ Storage capacity of lth local blood center 

௚ݒ
ᇱᇱ  Storage capacity of gth regional blood center 

݀ௗ௦  Maximum quantity of blood donated by dth group of donors under sth scenario 

ௗ௕ݎ  Distance between dth donor group and bth mobile blood facility 

ௗ௟ݎ
ᇱ  Distance between dth donor group and lth local blood center 

ܴ Coverage radius for each blood facility 

 ௦ Probability of sth scenario occurrence݌

 ௕௟  Disruption probability of each route from bth mobile blood facility to lth local blood centerߙ

 ௟௚  Disruption probability of each route from lth local blood center to gth regional blood centerߛ

 ௕௚  Disruption probability of each route from bth location to gth regional blood centerߤ

௚௣ߛ
ᇱ  Disruption probability of each route from gth regional blood center to pth hospital 

௟௣ߙ
ᇱ  Disruption probability of each route from lth local blood center to pth hospital 

 ௟ Disruption probability of lth local blood centerߩ

௚ߩ
ᇱ  Disruption probability of gth regional blood center 

߮ The rate at which services of local blood centers are directed to regional blood centers 
(called referral rate) 

 An arbitrary large value ܯ

Cost parameters: 

݂ܿ Establishment fixed cost of each mobile blood facility 

௝௕௧ݒ݉
௦  Cost of each mobile blood facility moving from location j to location b in period t under 

sth scenario  

௕ௗ௧ܿ݋
௦  Operating cost per blood unit at bth mobile blood facility from dth group of donors in period 

t under sth scenario 

ᇱܿ݋
௟௧
௦  Operating cost per blood unit at  lth local blood center in period t under sth scenario  

ᇱᇱܿ݋
௚௧
௦  Operating cost per blood unit at gth regional blood center in period t under sth scenario 

௕௟௧ܿݐ
௦  Transportation cost per blood unit from bth mobile blood facility to  lth local blood center 

in period t  under sth scenario 

௕௚௧ܾݐ
௦  Transportation cost per blood unit from bth mobile blood facility to gth regional blood center 

in period t under sth scenario 
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௟௚௧݀ݐ
௦  Transportation cost per blood unit from lth local blood center to gth regional blood center 

in period t  under sth scenario 

௟௣௧݁ݐ
௦  Transportation cost per blood unit from lth local blood center to pth hospital in period t 

under sth scenario 

ݐ ௚݂௣௧
௦  Transportation cost per blood unit from gth regional blood center to pth hospital in period t 

under sth scenario 

ℎܿ௟௧ Holding cost per blood unit at lth local blood center in period t 

ℎ ௚ܿ௧
ᇱ  Holding cost per blood unit at gth regional blood center in period t 

Integer decision variables:  

ܻ The number of mobile blood facilities 

Continuous decision variables:  

௕ௗ௟ܿݍ
௧௦  The amount of blood collected at bth mobile blood facility from dth donor in period t  to be 

delivered to lth local blood center under sth scenario 

௕ௗ௚ܾݍ
௧௦  The amount of blood collected at bth mobile blood facility from dth donor in period t  to be 

delivered to gth regional blood center under sth scenario 

௟ௗ௧݀ݍ
௦  The amount of blood collected at lth local blood center from dth donor in period t under sth 

scenario 

௟௚௧݁ݍ
௦  The amount of blood delivered from lth local blood center to gth regional blood center in 

period t under sth scenario 

௟௣௧ܽݍ
௦  The amount of blood delivered from lth local blood center to hospital p in period t under 

sth scenario 

ݍ ௚݂௣௧
௦  The amount of blood delivered from gth regional blood center to hospital p in period t 

under sth scenario  

௟௧௦ܫ  The amount of blood inventory in lth local blood center at the end of period t under sth 
scenario 

௚௧௦ܫ
ᇱ  The amount of blood inventory in gth regional blood center at the end of period t under sth 

scenario 

Binary decision variables: 

௝ܺ௕௧
௦  Is equal to 1 if a blood facility is located at jth site in period t–1, and moves to site bth in 

period t under sth scenario; 0, otherwise 

ௗܹ௕௧
௦  Is equal to 1 if dth group of donors is assigned to bth mobile blood facility in period t under 

sth scenario; 0, otherwise 

ܷௗ௟௧
௦  Is equal to 1 if dth group of donors is assigned to lth local blood center in period t under sth 

scenario; 0, otherwise 

ܷᇱ
௟௚௧
௦  Is equal to 1 if lth local blood center is allocated to gth regional blood center in period t 

under sth scenario; 0 otherwise 
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3.2. Objective function: 

ܼ ݁ݖ݅݉݅݊݅ܯ =   ݂ܿ ∗ ܻ + ෍ ௦݌
௦

෍ ෍ ෍ ௝௕௧ݒ݉
௦

௝ܺ௕௧
௦

௧௝௕

+ ෍ ௦݌
௦

෍ ෍ ෍ ෍ ௕ௗ௧ܿ݋ ௕௟ߙ ௟ߩ
௦ ௕ௗ௟ܿݍ

௧௦

௧௟௕ௗ

+ ෍ ௦݌
௦

෍ ෍ ෍ ෍ ௚ߩ
ᇱ ௕ௗ௧ܿ݋ ௕௚ߤ 

௦

௧௚௕ௗ

௕ௗ௚ܾݍ
௧௦

+ ෍ ௦݌
௦

෍ ෍ ෍ ෍ ᇱܿ݋ ௕௟ߙ ௟ߩ
௟௧
௦

௧௟௕ௗ

௕ௗ௟ܿݍ
௧௦

+ ෍ ௦݌
௦

෍ ෍ ෍ ෍  ௕ௗ௧ܿ݋ ௕௟ߙ ௟ߩ
௦ ௕ௗ௟ܿݍ

௧௦

௧௟௕ௗ

 

+ ෍ ௦݌
௦

෍ ෍ ෍ ෍ ௚ߩ
ᇱ   ௟௚ߛ 

ᇱᇱܿ݋
௚௧
௦

௧௚௕ௗ

௕ௗ௚ܾݍ
௧௦

+ ෍ ௦݌
௦

෍ ෍ ෍ ෍ ᇱܿ݋ ௟ߩ
௟௧
௦

௧௟௕

 ௕௟ߙ
ௗ

௕ௗ௟ܿݍ
௧௦  

+ ෍ ௦݌
௦

෍ ෍ ෍ ෍ ᇱܿ݋ ௟ߩ 
௟௧
௦ ௟ௗ௧݀ݍ 

௦

௧௟௝ௗ

+ ෍ ௦݌
௦

෍ ෍ ෍ ෍ ௚ߩ
ᇱ ᇱᇱܿ݋  ௕௚ߤ 

௚௧
௦

௧௚௕ௗ

௕ௗ௚ܾݍ
௧௦

+ ෍ ௦݌
௦

෍ ෍ ෍ ෍ ௚ߩ ௟ߩ
ᇱ ᇱᇱܿ݋  ௟௚ߛ 

௚௧
௦

௧௚௕ௗ

௟௚௧݁ݍ
௦   

+  ෍ ௦݌
௦

෍ ෍ ෍ ෍ ௕௟௧ܿݐ  ௕௟ߙ ௟ߩ
௦

௧௟௕ௗ

௕ௗ௟ܿݍ
௧௦

+ ෍ ௦݌
௦

෍ ෍ ෍ ෍ ௚ߩ
ᇱ ௕௚௧ܾݐ ௕௚ߤ 

௦

௧௚௕ௗ

௕ௗ௚ܾݍ
௧௦

+ ෍ ௦݌
௦

෍ ෍ ෍ ௟ߩ ௚ߩ 
ᇱ ௟௚௧݀ݐ ௟௚ߛ 

௦ ௟௚௧݁ݍ 
௦

௧௚௟

+ ෍ ௦݌
௦

෍ ෍ ෍ ௟ߩ ௟௣ߙ 
ᇱ ௟௣௧݁ݐ 

௦ ௟௣௧ܽݍ 
௦

௧௣௟

+ ෍ ௦݌
௦

෍ ෍ ෍ ௚ߩ
ᇱ  ௚௣ߛ 

ᇱ ݐ ௚݂௣௧
௦ ݍ ௚݂௣௧

௦

௧௣௚

+ ෍ ௦݌
௦

෍ ෍ ℎܿ௟௧ ܫ௟௧௦
௧௟

+ ෍ ௦݌
௦

෍ ෍ ℎܿ௚௧
ᇱ ௚௧௦ܫ 

ᇱ

௧௣

 

  

 (1) 

The present objective function minimizes the 
total cost of system, which comprises 
establishment cost of mobile facilities, total 
moving cost of mobile blood facilities, total 
operating cost of blood facilities considering the 

rate of facilities disruption, total transportation 
cost between blood facilities and demand zones 
regarding relevant routes reliability and total 
inventory cost at local blood facilities as well as 
demand zones.  
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3.3. Model constraints: 

෍ ෍ ௝ܺ௕௧
௦ ≤ ܻ

௝௕

ݐ∀  ∈ ܶ, ݏ∀ ∈ ܵ (2) 

෍ ௝ܺ௕௧
௦ ≤ 1              

௝

 ∀ܾ ∈ ,ܤ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (3) 

෍ ௝ܺ௕௧
௦ ≤ ෍ ܺ௕௝௧ିଵ

௦         
௝௝

 ∀ܾ ∈ ,ܤ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (4) 

ௗܹ௕௧
௦ ≤ ෍ ௝ܺ௕௧

௦      
௝

 ∀݀ ∈ ,ܦ ∀ܾ ∈ ,ܤ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (5) 

෍ ෍ ෍ ௕ௗ௟ܿݍ
௧௦

௧௟௕

+ ෍ ෍ ෍ ௕ௗ௚ܾݍ
௧௦

௧௚௕

+ ෍ ෍ ௟ௗ௧݀ݍ
௦

௧௟

≤   ௗ௦݋݀

 ∀݀ ∈ ,ܦ ݏ∀ ∈ ܵ (6) 

෍ ෍ ௕ௗ௟ܿݍ
௧௦

௟ௗ

+ ෍ ෍ ௕ௗ௚ܾݍ
௧௦

௚ௗ

≤ ܸ ∀ܾ ∈ ,ܤ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ   
(7) 

௕ௗ௟ܿݍ
௧௦ ≤ ௗܹ௕௧ ܯ

௦  

 

∀݀ ∈ ,ܦ ∀ܾ ∈ ,ܤ ∀݈ ∈ ,ܮ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (8) 

௕ௗ௚ܾݍ
௧௦ ≤ ௗܹ௕௧ ܯ

௦  

 

∀݀ ∈ ,ܦ ∀ܾ ∈ ,ܤ ∀݃ ∈ ,ܩ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (9) 

௟ௗ௧݀ݍ
௦ ≤ ௗ௟௧ܷ ܯ

௦  

 

∀݀ ∈ ,ܦ ∀݈ ∈ ,ܮ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ   (10) 

ௗ௕ݎ  ௗܹ௕௧
௦ ≤ ܴ 

 

∀݀ ∈ ,ܦ ∀ܾ ∈ ,ܤ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (11) 

ௗ௟ݎ
ᇱ  ܷௗ௟௧

௦ ≤ ܴ 

 

∀݀ ∈ ,ܦ ∀݈ ∈ ,ܮ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (12) 

෍ ܷᇱ
௟௚௧
௦ ≤ 1                                          

௚

 ∀݈ ∈ ,ܮ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (13) 

௟௚௧݁ݍ
௦ ≤ ᇱܷܯ

௟௚௧
௦  ∀݈ ∈ ,ܮ ∀݃ ∈ ,ܩ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (14) 

௟௚௧݁ݍ
௦ ≤ ߮(෍ ෍ ௕ௗ௟ܿݍ

௧௦

௕ௗ

+ ෍ ௟ௗ௧݀ݍ
௦ )

ௗ

 ∀݈ ∈ ,ܮ ∀݃ ∈ ,ܩ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (15) 

௟,௧ିଵ,௦ܫ + (1 − ߮) (෍ ෍ ௕ௗ௟ܿݍ
௧௦

௕ௗ

+ ෍ ௟ௗ௧݀ݍ
௦ )

ௗ

− ෍ ௟௣௧ܽݍ
௦

௣

= ௟௧௦ܫ  

 ∀݈ ∈ ,ܮ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (16) 
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௚,௧ିଵ,௦ܫ
ᇱ + (෍ ෍ ௕ௗ௚ܾݍ

௧௦

௕ௗ

+ ෍ ௟௚௧݁ݍ
௦ )

௟

− ෍ ݍ ௚݂௣௧
௦ = ௚௧௦ܫ 

ᇱ

௣

 

 ∀݃ ∈ ,ܩ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (17) 

෍ ௟௣௧݁ݐ
௦ + ෍ ௚௣௧ܽݐ

௦

௚௟

= ݀݁௣௧௦ ∀݌ ∈ ܲ, ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (18) 

௟௧௦ܫ ≤ ௟ݒ
ᇱ 

 

∀݈ ∈ ,ܮ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (19) 

௚௧௦ܫ
ᇱ ≤ ௚ݒ

ᇱᇱ  

 

∀݃ ∈ ,ܩ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (20) 

ௗܹ௕௧
௦ , ܷௗ௟௧

௦ , ܷᇱ
௟௚௧
௦  ∈ {0,1}  

 

∀݀ ∈ ,ܦ ∀ܾ ∈ ,ܤ ∀݈ ∈ ,ܮ ∀݃ ∈ ,ܩ ݐ∀ ∈ ܶ, ݏ∀
∈ ܵ 

(21) 

௕ௗ௟ܿݍ
௧௦ , ௕ௗ௚ܾݍ

௧௦ , ௟ௗ௧݀ݍ
௦ , ௟௚௧݁ݍ

௦ , ௟௣௧ܽݍ
௦ , ݍ ௚݂௣௧

௦ , ௟௧௦ܫ , ௚௧௦ܫ
ᇱ

≥ 0 
∀ܾ ∈ ,ܤ ∀݀ ∈ ,ܦ ∀݈ ∈ ,ܮ ∀݃ ∈ ,ܩ ݌∀ ∈ ܲ, ݐ∀

∈ ܶ, ݏ∀ ∈ ܵ 
(22) 

The total number of mobile facilities in each period 
must be at most equal to or less than the number of 
established blood facilities, represented by constraint 
(2). No more than one mobile facility will be 
established at each location, ensured by constraint (3). 
Constraint (4) guarantees that no mobile facility can 
move to another location in which any facilities have 
been established before. The donors must merely be 
assigned to open facilities, stated by constraint (5). 
Constraint (6) denotes the maximum allowable 
amount of blood, collected from each group of donors. 
Constraint (7) indicates the total amount of blood, 
collected by mobile facilities, must not exceed their 
capacities. Constraints (8) and (9) guarantee that no 
mobile facility can transport the donated blood if it is 
not assigned to the corresponding group of donors. 
Constraint (10) ensures that blood cannot be collected 
by local blood facilities from donors' groups not 
assigned to those facilities. Constraints (11) and (12) 
denote that donors would be only served by mobile 
blood facilities and local blood centers within their 
service area. Each local blood facility can only be 
assigned to one regional blood center, ensured by 
constraint (13). Constraint (14) makes sure that blood 
cannot be transported from a local blood facility to a 
regional blood center to which it is not assigned. 

Constraint (15) expresses that a ߮-percent rate of 
blood transfusion services is directed from a local 
blood facility to a regional blood center. Constraints 
(16) and (17) are known as blood inventory balance 
constraints at local blood facilities and regional blood 
centers, respectively. Blood demand in hospitals must 
be satisfied under each scenario ݏ, ensured by 
constraint (18). The storage capacities of local blood 
facilities and regional blood centers are denoted by 
constraints (19) and (20), respectively. Constraints 
(21) and (22) define the type of decision variables. 

4. Fuzzy Chance - Constrained 
Programming Model Based on 
the Credibility Theory 

The chance of fuzzy events was introduced in the 
form of possibility measure by Zadeh [Zadeh, 
1978]. Later on, the dual part of possibility 
measure called necessity measure was defined. 
However, neither possibility measure nor 
necessity measure is self-dual. Thus, Liu and Liu 
[Liu and Liu, 2002] presented a new self-dual 
measure in the context of credibility measure, 
which is the average value of the two previous 
measures; i.e., possibility and necessity measures 
[Li and Ralescu, 2009].  



 

Sara Cheraghi, Seyyed-Mahdi Hosseini-Motlagh 

237  International Journal of Transportation Engineering, 
Vol.4/ No.3/ Winter 2017 

Since chance constrained programming method 
enables the decision maker satisfy the chance 
constraints in at least the confidence level ߙ, and 
is applicable for different types of fuzzy numbers 
including triangular as well as trapezoidal ones, 
the problem is then dealt with by applying a 
credibility-based chance constrained 
programming method as an efficient fuzzy 
approach using the credibility measure regarding 
its self-duality feature and the expected value of 
fuzzy numbers [Nadizadeh and Hosseini Nasab, 
2014; Majidi, et al. 2017]. According to the self-
duality property, a fuzzy event would hold if its 
credibility is 1, however, it fails if its credibility 
is 0. 

Consider ̃ߝ  as a fuzzy variable and assume r is a 
real number. The credibility measure is then 
defined as equation (23) [Liu and Liu, 2002]. 

Additionally, constraint (23) is equal to the 
relationship (24) because ܲ̃ߝ}ݏ݋ ≤ {ݎ =
݌ݑݏ  ߤ  ̃ߝ}ܿ݁ܰ  ௫ஸ௥ and(ݔ) ≤ {ݎ =  1 −
݌ݑݏ  ߤ   .  ௫வ௥(ݔ)

Furthermore, the expected value of ̃ߝ could be 
defined as equation (25) according to the 
credibility measure [Liu and Liu, 2002]. 

̃ߝ}ݎܥ ≤ {ݎ =  ଵ
ଶ

  ൫݌ݑݏ  μ (x)୶ஸ୰ + 1 −
݌ݑݏ   μ (x)୶வ୰൯ (23)   

̃ߝ}ݎܥ ≤ {ݎ = 
1
̃ߝ}ݏ݋݌)  2 ≤ {ݎ + ̃ߝ}ܿ݁݊ ≤  (24)   ({ݎ

E[̃ߝ] =  න ̃ߝ}ݎܿ ≥ {ݎ ݎ݀ − න ̃ߝ}ݎܿ ≤ {ݎ  ݎ݀
଴

ିஶ

ஶ

଴
  (25) 

Let  ̃ߝ be a trapezoidal fuzzy number such 
that ̃ߝ = ൫ߝ(ଵ), ,(ଶ)ߝ ,(ଷ)ߝ  ൯. Thus, the(ସ)ߝ
corresponding credibility measures and the 
expected value of ̃ߝ are determined by the 
following relationships:  

̃ߝ}ݎܥ ≤ {ݎ

=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

,∞−)߳ݎ                           0 ((ଵ)ߝ
ݎ − (ଵ)ߝ

(ଶ)ߝ)2 − ,(ଵ)ߝ)߳ݎ    ((ଵ)ߝ ((ଶ)ߝ

1
,(ଶ)ߝ)߳ݎ                           2 ((ଷ)ߝ
ݎ − (ଷ)ߝ2 + (ସ)ߝ

(ସ)ߝ)2 − ((ଷ)ߝ ,(ଷ)ߝ)߳ݎ   ((ସ)ߝ

1 ,(ସ)ߝ)߳ݎ                            +∞)

  (26.1) 

̃ߝ}ݎܥ ≥ {ݎ

=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

,∞−)߳ݎ                          1 ((ଵ)ߝ
(ଶ)ߝ2 − (ଵ)ߝ − ݎ

(ଶ)ߝ)2 − ((ଵ)ߝ ,(ଵ)ߝ)߳ݎ    ((ଶ)ߝ

1
,(ଶ)ߝ)߳ݎ                          2 ((ଷ)ߝ

(ସ)ߝ − ݎ
(ସ)ߝ)2 − ,(ଷ)ߝ)߳ݎ   ((ଷ)ߝ ((ସ)ߝ

0 ,(ସ)ߝ)߳ݎ                          +∞)

  (26.2) 

EV(̃ߝ ) = 
க(భ)ା க(మ)ାக(య)ାக(ర)

ସ
  (27) 

According to above-mentioned relationships, the 
credibility measure of ̃ߝ as a trapezoidal fuzzy 
number could be defined as follows [Zhu and 
Zhang, 2009]:  

To solve the proposed fuzzy model, we have 
applied the combination of the expected value 
and the chance constrained programming. The 
first method is used to formulate the objective 
function, while the second one is applied to model 
the chance constraints including imprecise 
parameters. The hybrid method (i.e., EV and 
CCP) benefits from the advantages such as 
simplicity by not increasing the number of 
constraints. It also does not require confidence 
level for objective functions nor the ideal 
solution. 

 

 

̃ߝ}ݎܥ ≤ {ݎ ≥ <==>   ߙ ݎ   ≥ (2 − (ଷ)ߝ(ߙ2 + ൫2ߙ − 1൯ߝ(ସ)      ߙ > 0.5 (28.1) 

̃ߝ}ݎܥ ≥ {ݎ ≥ <==>   ߙ ݎ   ≤ ൫2ߙ − 1൯ߝ(ଵ) + (2 − ߙ   (ଶ)ߝ(ߙ2 > 0.5 (28.2) 
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4.1.  The Equivalent Auxiliary Crisp Model 
Considering the relationships (26.1), (26.2) and 
(27), the above model can be transformed to the 
equivalent crisp one as below if the chance 

constraints are satisfied with minimum 
confidence level 0.5 (i.e., ߙ > 0.5). 

[ܼ]ܧ ݁ݖ݅݉݅݊݅ܯ

= ቆ 
(ଵ)ܥ݂ + (ଶ)ܥ݂  + (ଷ)ܥ݂ + (ସ)ܥ݂

4
 ቇ  ܻ  

+ ෍ ෍ ෍ ෍ )௦݌
௝௕௧(ଵ)ݒ݉

௦ + ௝௕௧(ଶ)ݒ݉
௦ + ௝௕௧(ଷ)ݒ݉

௦ + ௝௕௧(ସ)ݒ݉
௦

4
) ௝ܺ௕௧

௦

௦௧௕௝

+ ෍ ෍ ෍ ෍ ෍ ௦݌ ቆ
௕ௗ௧(ଵ)ܿ݋

௦ + ௕ௗ௧(ଶ)ܿ݋
௦ + ௕ௗ௧(ଷ)ܿ݋

௦ + ௕ௗ௧(ସ)ܿ݋
௦

4
ቇ ቆ

+ ௕௟(ଵ)ߙ + ௕௟(ଶ)ߙ + ௕௟(ଷ)ߙ )௕௟ߙ

4
௦௧௟௕ௗ

∗ ൬
௟(ଵ)ߩ + ௟(ଶ)ߩ + ௟(ଷ)ߩ + ௟(ସ)ߩ

4
൰ ௕ௗ௟ܿݍ

௧௦

+ ෍ ෍ ෍ ෍ ෍ ௦݌ ቆ
௕ௗ௧(ଵ)ܿ݋

௦ + ௕ௗ௧(ଶ)ܿ݋
௦ + ௕ௗ௧(ଷ)ܿ݋

௦ + ௕ௗ௧(ସ)ܿ݋
௦

4
ቇ

௦௧௚௕

൬
௕௚(ଵ)ߤ + ௕௚(ଶ)ߤ + ௕௚(ଷ)ߤ + )௕௚ߤ

4
ௗ

∗ ቆ
௚(ଵ)ߩ

ᇱ + ௚(ଶ)ߩ
ᇱ + ௚(ଷ)ߩ

ᇱ + ௚(ସ)ߩ
ᇱ

4   
ቇ ௕ௗ௚ܾݍ

௧௦

+ ෍ ෍ ෍ ෍ ෍ ௦݌ ቆ
ᇱܿ݋

௟௧(ଵ)
௦ + ᇱܿ݋

௟௧(ଶ)
௦ + ᇱܿ݋

௟௧(ଷ)
௦ + ᇱܿ݋

௟௧(ସ)
௦

4
ቇ

௦௧௟௕

ቆ
+ ௕௟(ଵ)ߙ + ௕௟(ଶ)ߙ + ௕௟(ଷ)ߙ  ௕௟(ସ)ߙ

4
ௗ

∗ ൬
௟(ଵ)ߩ + ௟(ଶ)ߩ + ௟(ଷ)ߩ + ௟(ସ)ߩ

4
൰ ௕ௗ௟ܿݍ

௧௦

+ ෍ ෍ ෍ ෍ ௦݌ ቆ
ᇱܿ݋

௟௧(ଵ)
௦ + ᇱܿ݋

௟௧(ଶ)
௦ + ᇱܿ݋

௟௧(ଷ)
௦ + ᇱܿ݋

௟௧(ସ)
௦

4
ቇ ൬

௟(ଵ)ߩ + ௟(ଶ)ߩ + ௟(ଷ)ߩ + ௟(ସ)ߩ

4
൰ ௟ௗ௧݀ݍ

௦

௦௧௟௝

+ ෍ ෍ ෍ ෍ ෍ ௦݌ ቆ
ᇱᇱܿ݋

௚௧(ଵ)
௦ + ᇱᇱܿ݋

௚௧(ଶ)
௦ + ᇱᇱܿ݋

௚௧(ଷ)
௦ + ᇱᇱܿ݋

௚௧(ସ)
௦

4
ቇ

௦௧௚௕

൬
௕௚(ଵ)ߤ + ௕௚(ଶ)ߤ + ௕௚(ଷ)ߤ + ௕௚ߤ

4
ௗ

∗ ቆ
௚(ଵ)ߩ

ᇱ + ௚(ଶ)ߩ
ᇱ + ௚(ଷ)ߩ

ᇱ + ௚(ସ)ߩ
ᇱ

4
ቇ ௕ௗ௚ܾݍ

௧௦

+ ෍ ෍ ෍ ෍ ෍ ௦݌ ቆ
௕௟௧(ଵ)ܿݐ

௦ + ௕௟௧(ଶ)ܿݐ
௦ + ௕௟௧(ଷ)ܿݐ

௦ + ௕௟௧(ସ)ܿݐ
௦

4
ቇ

௦௧௟௕

൬
+ ௕௟(ଵ)ߙ + ௕௟(ଶ)ߙ + ௕௟(ଷ)ߙ  ௕௟(ସ)ߙ

4
൰

ௗ

∗ ൬
௟(ଵ)ߩ + ௟(ଶ)ߩ + ௟(ଷ)ߩ + ௟(ସ)ߩ

4
൰ ௕ௗ௟ܿݍ

௧௦

+ ෍ ෍ ෍ ෍ ෍ ௦݌ ቆ
௕௚௧(ଵ)ܾݐ

௦ + ௕௚௧(ଶ)ܾݐ
௦ + ௕௚௧(ଷ)ܾݐ

௦ + ௕௚௧(ସ)ܾݐ
௦

4
ቇ

௦௧௚௕

൬
௕௚(ଵ)ߤ + ௕௚(ଶ)ߤ + ௕௚(ଷ)ߤ + )௕௚ߤ

4
ௗ

∗ ቆ
௚(ଵ)ߩ

ᇱ + ௚(ଶ)ߩ
ᇱ + ௚(ଷ)ߩ

ᇱ + ௚(ସ)ߩ
ᇱ

4
ቇ ௕ௗ௚ܾݍ

௧௦  
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+ ෍ ෍ ෍ ෍ )௦݌
௟௚௧(ଵ)݀ݐ

௦ + ௟௚௧(ଵ)݀ݐ
௦ + ௟௚௧(ଵ)݀ݐ

௦ + ௟௚௧(ଵ)݀ݐ
௦

4
)(

+ ୪୥ (ଵ)ߛ + ୪୥ (ଶ)ߛ + ୪୥ (ଷ)ߛ  ୪୥ (ସ)ߛ

4
)

௦௧௚௟

∗ ൬
௟(ଵ)ߩ + ௟(ଶ)ߩ + ௟(ଷ)ߩ + ௟(ସ)ߩ

4
൰ (

௚(ଵ)ߩ
ᇱ + ௚(ଶ)ߩ

ᇱ + ௚(ଷ)ߩ
ᇱ + ௚(ସ)ߩ

ᇱ

4
௟௚௧݁ݍ(

௦

+ ෍ ෍ ෍ ෍ )௦݌
௟௣௧௦(ଵ)݁ݐ + ௟௣௧௦(ଶ)݁ݐ + ௟௣௧௦(ଷ)݁ݐ + ௟௣௧௦(ସ)݁ݐ

4
)(

௟௣(ଵ)ߙ
ᇱ + ௟௣(ଶ)ߙ

ᇱ + ௟௣(ଷ)ߙ
ᇱ + ௟௣(ସ)ߙ

ᇱ

4
)

௦௧௣௟

∗ ൬
௟(ଵ)ߩ + ௟(ଶ)ߩ + ௟(ଷ)ߩ + ௟(ସ)ߩ

4
൰ ௟௚௧݁ݍ

௦

+ ෍ ෍ ෍ ෍ )௦݌
ݐ ௚݂௣௧(ଵ)

௦ + ݐ ௚݂௣௧(ଶ)
௦ + ݐ ௚݂௣௧(ଷ)

௦ + ݐ ௚݂௣௧(ସ)
௦

4
) ∗ (

௚௣(ଵ)ߛ
ᇱ + ௚௣(ଶ)ߛ

ᇱ + ௚௣(ଷ)ߛ
ᇱ + ௚௣(ସ)ߛ

ᇱ

4
)

௦௧௣௚

∗ (
௚(ଵ)ߩ

ᇱ + ௚(ଶ)ߩ
ᇱ + ௚(ଷ)ߩ

ᇱ + ௚(ସ)ߩ
ᇱ

4
ݍ( ௚݂௣௧

௦  

+ ෍ ෍ ෍ )௦݌
ℎܿ௟௧(ଵ) + ℎܿ௟௧(ଶ) + ℎܿ௟௧(ଷ) + ℎܿ௟௧(ସ)

4
௟௧௦ܫ(

௦௧௟

    

+ ෍ ෍ ෍ )௦݌
ℎܿ௚௧(ଵ)

ᇱ + ℎ ௚ܿ௧(ଶ)
ᇱ + ℎ ௚ܿ௧(ଷ)

ᇱ + ℎ ௚ܿ௧(ସ)
ᇱ

4
௚௧௦ܫ(

ᇱ

௦௧௣

 

 (29) 

Subject to: 

෍ ෍ ௝ܺ௕௧
௦ ≤ ܻ

௝௕

ݐ∀  ∈ ܶ, ݏ∀ ∈ ܵ (30
) 

෍ ௝ܺ௕௧
௦ ≤ 1              

௝

 ∀ܾ ∈ ,ܤ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (31
) 

෍ ௝ܺ௕௧
௦ ≤ ෍ ܺ௕௝௧ିଵ

௦          
௝௝

 ∀ܾ ∈ ,ܤ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (32
) 

ௗܹ௕௧
௦ ≤ ෍ ௝ܺ௕௧

௦      
௝

 ∀݀ ∈ ,ܦ ∀ܾ ∈ ,ܤ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (33
) 

෍ ෍ ෍ ௕ௗ௟ܿݍ
௧௦

௧௟௕

+ ෍ ෍ ෍ ௕ௗ௚ܾݍ
௧௦

௧௚௕

+ ෍ ෍ ௟ௗ௧݁ݍ
௦

௧

≤ ߙ2) − ௗ௦(ଵ)݋݀(1 + (2 − ௗ௦(ଶ)݋݀(ߙ2
௟

 

 ∀݀ ∈ ,ܦ ݏ∀ ∈ ܵ (34
) 

෍ ෍ ௕ௗ௟ܿݍ
௧௦

௟ௗ

+ ෍ ෍ ௕ௗ௚ܾݍ
௧௦

௚ௗ

≤ ߙ2) − 1) (ܸଵ) + (2 − (ߙ2 (ܸଶ) 
 

 ∀ܾ ∈ ,ܤ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ   (35
) 

௕ௗ௟ܿݍ
௧௦ ≤ ௗܹ௕௧ ܯ

௦  ∀݀ ∈ ,ܦ ∀ܾ ∈ ,ܤ ∀݈ ∈ ,ܮ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (36
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௕ௗ௚ܾݍ
௧௦ ≤ ௗܹ௕௧ ܯ

௦  

 

∀݀ ∈ ,ܦ ∀ܾ ∈ ,ܤ ∀݃ ∈ ,ܩ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (37
) 

௟ௗ௧݁ݍ
௦ ≤ ௗ௟௧ܷ ܯ

௦  

 

∀݀ ∈ ,ܦ ∀݈ ∈ ,ܮ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ   (38
) 

 ൣ(2 − ௗ௕(ଷ)ݎ(ߙ2 + ߙ2) − ௗ௕(ସ)൧ ௗܹ௕௧ݎ(1
௦ ≤ ߙ2)] − 1)ܴ(ଵ) + (2 −  [(ଶ)ܴ(ߙ2

 ∀݀ ∈ ,ܦ ∀ܾ ∈ ,ܤ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (39
) 

ൣ(2 − ௗ௟(ଷ)ݎ(ߙ2
ᇱ + ߙ2) − ௗ௟(ସ)ݎ(1

ᇱ ൧ ܷௗ௟௧
௦ ≤ ߙ2)] − 1)ܴ(ଵ) + (2 −  [(ଶ)ܴ(ߙ2

 ∀݀ ∈ ,ܦ ∀݈ ∈ ,ܮ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (40
) 

෍ ௟ܷ௚௧
ᇱ௦ ≤ 1                                          

௚

 ∀݈ ∈ ,ܮ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (41
) 

௟௚௧݁ݍ
௦ ≤ ௟ܷ௚௧ ܯ

ᇱ௦  

 

∀݈ ∈ ,ܮ ∀݃ ∈ ,ܩ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (42
) 

௟௚௧݁ݍ
௦ ≤ ߙ2)] − 1)߮(ଵ) + (2 − ෍)[(ଶ)߮(ߙ2 ෍ ௕ௗ௟ܿݍ

௧௦

௕ௗ

+ ෍ ௟ௗ௧݀ݍ
௦ )

ௗ

 

 

 ∀݈ ∈ ,ܮ ∀݃ ∈ ,ܩ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (43
) 

߮(ଷ) ൭෍ ෍ ௕ௗ௟ܿݍ
௧௦

௕ௗ

+ ෍ ௟ௗ௧݀ݍ
௦

ௗ

൱ ≤ ௟,௧ିଵ,௦ܫ − ௟௧௦ܫ + ෍ ෍ ௕ௗ௟ܿݍ
௧௦

௕ௗ

+ ෍ ௟ௗ௧݀ݍ
௦

ௗ

− ෍ ௟௣௧ܽݍ
௦

௣

≤ ߮(ଶ) ൭෍ ෍ ௕ௗ௟ܿݍ
௧௦

௕ௗ

+ ෍ ௟ௗ௧݀ݍ
௦

ௗ

൱ 

 

 ∀݈ ∈ ,ܮ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (44
) 

௚,௧ିଵ,௦ܫ
ᇱ + (෍ ෍ ௕ௗ௚ܾݍ

௧௦

௕ௗ

+ ෍ ௟௚௧݁ݍ
௦ )

௟

− ෍ ݍ ௚݂௣௧
௦ = ௚௧௦ܫ 

ᇱ

௣

 

∀݃ ∈ ,ܩ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (45
) 

෍ ௟௣௧ܽݍ
௦ + ෍ ݍ ௚݂௣௧

௦

௚௟

≥ (2 − ௣௧௦(ଷ)݁݀(ߙ2 + ߙ2) − 1)݀݁௣௧௦(ସ) 



 

Sara Cheraghi, Seyyed-Mahdi Hosseini-Motlagh 

241  International Journal of Transportation Engineering, 
Vol.4/ No.3/ Winter 2017 

݌∀  ∈ ܲ, ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (46
) 

௟௧௦ܫ ≤ ߙ2) − ௟(ଵ)ݒ(1
ᇱ + (2 − ௟(ଶ)ݒ(ߙ2

ᇱ  

 

∀݈ ∈ ,ܮ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (47
) 

௚௧௦ܫ
ᇱ ≤ ߙ2) − ௚(ଵ)ݒ(1

ᇱᇱ + (2 − ௚(ଶ)ݒ(ߙ2
ᇱᇱ  

 

∀݃ ∈ ,ܩ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (48
) 

ௗܹ௕௧
௦ , ܷௗ௟௧

௦ , ௟ܷ௚௧
ᇱ௦  ∈ {0,1}   

 

∀݀ ∈ ,ܦ ∀ܾ ∈ ,ܤ ∀݈ ∈ ,ܮ ∀݃ ∈ ,ܩ ݐ∀ ∈ ܶ, ݏ∀
∈ ܵ 

(49
) 

௕ௗ௟ܿݍ
௧௦ , ௕ௗ௚ܾݍ

௧௦ ௟௣௧ܽݍ,
௦ , 

ݍ ௚݂௣௧
௦ , ௟௚௧݁ݍ

௦ , ௟௧௦ܫ , ௚௧௦ܫ
ᇱ , ௟ௗ௧݀ݍ

௦ ≥ 0    
∀݈ ∈ ,ܮ ∀݃ ∈ ,ܩ ݐ∀ ∈ ܶ, ݏ∀ ∈ ܵ (50

) 

  

5. Case Study 
Numerous natural disasters such as earthquakes 
occur in the world each year, which cause loss of 
life and leave some economic damage in its wake. 
Iran is among top 10 countries with natural 
disasters, situated on one of the most seismic 
earthquake belts in the world. According to the 
official statistics, around 18 percent of the world's 
destructive earthquakes belong to Iran, and 
populous provinces such as Tehran, the capital of 
Iran, will have a greater share of losses caused by 
earthquakes. The present case study is considered 

for earthquake occurrence in district 1 of Tehran, 
and the geographic position of the district is 
depicted in Figure 2. 

Many years ago, JICAiii investigated the 
vulnerable areas of Tehran at the request of Iran 
to estimate the damage and losses caused by 
earthquakes. According to the studies done by 
this group on 22 districts of Tehran and its main 
active faults, a brief explanation of the most likely 
dangerous faults and their properties is presented 
and the related scenario models are then outlined 
in Table 2. 

 
Figure 2. Geographic dispersion of 22 districts of Tehran metropolis 
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Mosha Fault (MF), which is more than 200 km 
long, is one of the major active faults in Tehran in 
terms of the length and danger. The largest 
historical earthquake by magnitude occurred in 
958 with a distance of 50 km from the center of 
Tehran. The earthquake corresponded to the 
activity of the western part of the fault. 

North Tehran Fault (NTF) is a 90 km-long fault, 
located in the northern margin of Tehran. The 
damage caused by the earthquakes originated 
from this fault will be even worse than one 
occurred in 958. So, we consider the North 

Tehran Fault instead of Mosha Fault for the 
earthquake scenario. 

South Ray Fault (SRF), which is about 20 km 
long, is located in south of Tehran. This fault is 
considered for the sake of its better geological 
surface trace and micro-seismic activities. 

Besides, The Modified Mercalli Intensity (MMI) 
scale of earthquakes occurred in each region of 
district 1 is estimated in Table 3. In continue, 
north Tehran fault and the vulnerable areas of 
district 1 based on this fault are mapped in 
Figures 3 and 4, respectively.  

 
Table 2. The properties of earthquake scenario models  

Floating fault 
model 

SRF Model    NTF Model   MF Model   Properties  

13  26  58  68  length  

10  16  27  30 width  

-- South  North  North eastern location  

4/6  7/6  2/7  2/7 magnitude  

 
Table 3. The Modified Mercalli Intensity (MMI) scale of earthquakes in each region  

Floating fault model SRF  NTF  MF Region 

7/8  3/7  3/9   3/8  1  

18/8  9/6  8/8  6/7  2  

2/8  8/6  9/8  8/7  3  

6/8  1/7  3/9 2/8  4  

3/8  7  9  1/8  5  

3/8  7  9 1/8  6  

3/8  7  9  7/7  7  

6/8  3/7  3/9  1/8  8  

3/8  1/7  1/9  1/8  9  

9/7 

 

 

 

7/6  5/8  8  

  

  

10  
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Figure 3. The north Tehran fault 

 
Figure 4. The vulnerable areas of district one according to the north Tehran fault 

Figure 5. The candidate location of mobile blood facilities and existing local blood 
facilities, regional blood centers and hospitals 
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Table 4. The geographic coordinates of donor points and hospitals 

Points  Longitude Latitude 

 ଵ 35.810363 51. 523087ܦ

 ଶ  35.794213 51.433588ܦ

 ଷ 35.791915 51.442772ܦ

 ସ 35.809736 51.451183ܦ

 ହ 35.804725 51.461569ܦ

 ଺ 35.815444 51.475559ܦ

 ଻ 35.797554  51.483198ܦ

 51.483971  35.799782 ଼ܦ

 ଽ 35.805699  51.509806ܦ

 ଵ଴  35.815931   51.504484ܦ

Hଵ 35. 790687  51.414276 

Hଶ 35. 791648 51.422644 

 
As stated before, district 1 with a population over 
350,000, includes 10 regions. To supply blood 
when facing disasters, all 10 regions of district 1 
are assumed to contribute to blood distribution to 
the affected areas. In this paper, the center of each 
region represents a donor point; the locations of 
blood facilities and hospitals as demand zones are 
depicted in Figure 5. Besides, the geographic 
coordinates of donor points and hospitals are 
estimated in Table 4, and the distance between 
two arbitrary points can be obtained by the 
following equation: 

݀௜௝ = 6371.1 × ܣܮ)݊݅ݏൣݏ݋ܿܿݎܽ ௜ܶ) × ܣܮ൫݊݅ݏ ௃ܶ൯
+ ܣܮ)ݏ݋ܿ ௜ܶ) × ܣܮ൫ݏ݋ܿ ௝ܶ൯
× ௝ܩܱܰܮ൫ݏ݋ܿ −      ௜൯൧  (73)ܩܱܰܮ

6. Results 
 

In this section, we report the corresponding 
results to evaluate the proposed model and the 
solution approach. The proposed model is solved 
using CPLEX solver encoded in GAMS software 

– version 24.1 - on a laptop computer with 
features of Intel Core i5 CPU, 2.5 GHz and 6GB 
of RAM. The model is implemented considering 
different confidence levels ߙ, provided in Table 
5, then the sensitivity analysis is presented.  
What is evident is that the model is solved within 
a reasonable length of time ended up with no gap 
and no need to mathematical solution methods. In 
addition, the increased value of α results in the 
increased number of mobile blood facilities and 
thus the increased supply chain costs, as shown in 
Figure 6. In the meantime, no changes can be 
observed in the number of mobile blood facilities 
when α is increased from 0.6 to 0.7 and from 0.9 
to 1. Therefore, the increase of objective function 
value could be owing to the increase of 
transportation cost and operating cost caused by 
the increase of service level for fuzzy parameters. 
Since blood supply is so critical especially in 
disasters, decision makers need to determine 
conditions, in which the demand is satisfied at 
higher reliability degree α although it imposes 
higher costs on the chain. In fact, the decision 
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maker has to make a tradeoff between cost and 
demand satisfaction to decide on the confidence 
level of demand satisfaction besides the number 
and location of mobile blood facilities.    

The model is solved for 5 mobile blood facilities, 
and the allocation of donors to mobile and local 
blood facilities is shown in Table 6 considering 
the 1st time period and the confidence level  ߙ =
0.7 . An overall observation is that, mobile blood 
facilities are frequently assigned to the regions 
with higher destruction risk regarding the disaster 
intensity based on each scenario. As can be 
observed in Figures 7, 3 mobile blood facilities 
are chosen from 5 candidate locations.  

This section analyzes the changes in the supply 
chain costs as the capacity of mobile facilities is 
increased. Figures 8 and 9 show supply chain 
costs over different capacity levels at confidence 
levels ߙ = 0.7 and ߙ = 0.9, respectively. As can 
be seen in the corresponding diagrams, the 
increased capacity of mobile facilities results in 
decreased supply chain costs. The amount of cost 
savings (i.e. curve steepness) is a function of 
“inventory cost over transportation cost” ratio. 
Accordingly, a higher ratio is obtained by 
adopting a greater inventory cost and smaller 
transportation cost, which lets the supply chain 
network take advantage of increased capacity of 
facilities in order to reduce the times of 
transportation between nodes.

 

Table 5.  The value of objective function and the number of mobile blood facilities based on different ࢻ levels  

 Run time (S) ܼ ܻ ߙ

0.5 2 6148 0:17:34 

0.6 3 7024 0:22:21 

0.7 3 7313 0:16:58 

0.8 4 8142 0:20:09 

0.9 5 8963 0:24:33 

1 5 9074 0:20:41 

 

 
Figure 6. The impact of confidence level changes on the supply chain cost 
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Table 6.  Donors assignment to mobile and local blood facilities based on each scenario model considering t=1  

Regions  MF scenario  NTF 
scenario  

SRF 
scenario  

Floating fault 
scenario  

1 L5 M8 M8 L5 

2 M3 M3 M3 M3 

3 M3 M3 M3 M3 

4 L5 L5 L5 M8 

5 L5 L5 L5 L5 

6 M6 M6 M6 M6 

7 L7 M8 L7 L7 

8 M8 M8 L7 L7 

9 M6 M6 M6 M6 

10 M6 M6 M6 M6 

 

 

 

 

 

 

 

 

 

Figure 7. The established mobile blood facilities considering t=1 and ࢻ = ૙. ૠ 

 

 

 

 

 

 

 

 

Figure 8. The impact of capacity changes on the total supply chain cost; ࢻ = ૙. ૠ 
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Figure 9. The impact of capacity changes on the total supply chain cost; ࢻ = ૙. ૢ 

 

6.1  Sensitivity Analysis on the Capacity of 
Mobile Facilities 

In some parts, as shown in Figures 8 and 9, the 
curve is steeper which indicates reduced supply 
chain costs and thus increased cost savings 
resulting from the reduced transportation cost in 
total since the transportation duration decrease by 
increasing the capacity of mobile blood facilities. 
For instance, as the increase in capacity level 
reaches 5%, the amount of cost savings will 
become 1% while this amount of saving will be 
1.95% when the capacity increases to 30%, if 
possible. Thus, these levels could be regarded as 
appropriate points for making a remarkable 

reduction in supply chain costs even though 
choosing the level of capacity increase is reliant 
on the decision makers' policies. However, the 
slope of the curve will reduce gradually until it 
comes to zero in some parts and no changes 
would be observed as the capacity of facility is 
increased, which means that no capacity shortage 
has occurred. In other words, the current capacity 
of facility can satisfy the respective demand. 
Besides, the amount of cost savings will decrease 
due to the increase in supply chain costs as the 
service level increases from 0.7 to 0.9. 
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Figure 10. The impact of increasing coverage radius on the total supply chain cost; ࢻ = ૙. ૠ 
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6.2.Sensitivity Analysis on the Coverage 
Radius of Blood Facilities  

In this section, the impact of an increase in 
coverage radius of blood facilities on total 
network cost is examined. To do so, the value of 
this parameter is varied, as shown in Figures 10 
and 11. A general observation is that increasing 
the coverage radius of facilities leads to an 
increase in the capability of each facility to cover 
more donors, and thus, the total required number 
of blood facilities reduces. This reduction 
provides cost savings for the supply chain. This 
pattern will carry on until the total volume of 
blood to be collected by each blood facility does 
not exceed the capacity of that facility. To be 
more specific, in Figure 10, total cost of the 
network will reduce dramatically by increasing 
the coverage radius to 70. From this point on, 
further increases in the value of this parameter 
have no impact on reducing the objective function 
value. Almost the same pattern can be observed 
in Figure 11, but the difference is that more cost 
will be imposed on the supply chain as the service 
level increases from 0.7 to 0.9 and the network 
cost will decrease with slighter slope.  
6.3.Sensitivity Analysis on the Reliability 

of Routes 
We now aim to examine whether changes in the 
reliability of routes between facilities affect the 
supply chain costs. To this end, the model is 
solved for different reliability levels of routes 

with respect to α = 0.7 and α = 0.9. As can be 
observed in the following figures, the increased 
reliability of routes, or in other words, decreased 
disruption probability of routes leads to reduced 
supply chain costs. Comparing the two Figures 10 
and 11, it can be inferred that supply chain cost 
savings would decrease owing to the increased 
confidence level of services from 0.7 to 0.9, 
which leads to the increased supply chain costs. 
Furthermore, for some disruption levels (that part 
of the route reliability axis with negative 
numbers), cost savings reduce almost 
dramatically which possibly implies substituting 
another route with the current one, which may be 
out of order, so as to transfer required blood units 
from one facility to another or to a demand zone. 
On the other hand, decreases in the probability of 
route failure (that part of the route reliability axis 
with positive numbers), will enhance the amount 
of cost savings. For instance for Figure 10, if the 
reliability of route increases to 5%, the slope of 
the curve will reach 0.52 which shows 2.6% 
increase in cost savings while the slope reduces 
for greater route reliability. For example, the 
increase of 10% in route reliability results in the 
slope of 0.38 and 3.8% increase in cost savings 
and this amount is about 5% if we have 15% 
decrease in the route failure  
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Figure 11. The impact of increasing coverage radius on the total supply chain cost; ࢻ = ૙.9 
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Figure 12. The impact of route reliability changes on the total supply chain cost; હ = ૙. ૠ 

 

 

 

 

 

 

 

 

 

Figure 13. The impact of route reliability changes on the total supply chain cost; હ = ૙. ૢ 

 

6.4.Sensitivity Analysis on the Disruption 
Probability of Local and Regional 
Facilities 

This section is supposed to investigate the impact 
of changes in the disruption probability of 
facilities on the supply chain costs. According to 
Figures 12 and 13, a general observation is that 
the supply chain cost is affected by the changes in 
the facilities disruption. It means that the 
decreased probability of facilities disruption ends 
in supply chain cost improvement, in the 
meantime, the increased percentage of facilities 
disruption leads to cost increase. Noteworthy, 
those parts of the curve with steeper slope and 
thus the greater cost savings indicate that the 
same facilities are going to be used as did before. 
So, no extra costs will be imposed on the supply 

chain while the lower-slope parts (those for the 
positive numbers on the facility disruption axis) 
represent reduced cost savings because higher 
costs are imposed on the supply chain. It may be 
due to replacing new facilities with the previous 
ones as they are out of work or badly disrupted. 
For instance for Figure 12, if the facility 
disruption decreases to 5%, the slope of the curve 
will reach 0.12, which indicates 0.6% increase in 
cost savings while the slope thus the amount of 
cost savings increases as the percentage of facility 
disruption reduces more. On the other hand, the 
slope of 0.06 will be obtained when the facility 
disruption increases to 5%, which causes a cost 
increase of 0.3% and this amount will be even 
more if the disruption of facilities grows until it 
comes to 3.8% at disruption rate of 0.2. 
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Figure 14. The impact of facilities disruption changes on the total supply chain cost; હ = ૙. ૠ 

 

 

 

 

 

 

 

 

 

 

Figure 15. The impact of facilities disruption changes on the total supply chain cost; હ = ૙. ૢ

 

6.5.Sensitivity Analysis on the Referral 
Rate 

In this section, we examine if changes in the 
referral rate can be employed as a strategy to 
improve supply chain costs. Notably, more 
transfusion services would be conducted in 
regional blood centers as referral rates become 
larger. For instance, a referral rate of 0.4 indicates 
that 40% of transfusion operations are to be 
referred to regional blood centers and the rest of 
them would be done in local blood centers. As can 
be observed from Figures 16 and 17, the greater 
referral rates eventuate in increased supply chain 

costs and more facilities are required to be opened 
in order to maintain the same service level. 
Consequently, it would be more cost-effective to 
facilitate local blood centers and enhance their 
independency from regional blood centers with 
the aim of decreasing the referral rate and thus the 
supply chain costs. What is evident in all figures, 
represented earlier, is that the amount of cost 
savings would reduce as the service level grows. 
The increase of service level would result in 
larger supply chain costs by enhancing either the 
number of facilities or any other probable 
changes in the supply chain characteristics so as 
to meet demand as much as possible. 
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6.6.Model Performance (Fuzzy-Stochastic 
Approach Versus Deterministic 
Approach) 

Finally, this section provides a comparable 
analysis for the performance of the proposed 
model under fuzzy-stochastic and deterministic 
approaches. To do so, we evaluate the model by 
particularly considering the impact of increasing 
the capacity of mobile blood facilities. Figure 18 
depicts how the proposed model performs under 
aforementioned approaches while ߙ = 0.7. The 
figure implies that the network total cost under 

both approaches decreases as the capacity of 
mobile blood facilities is enhanced. For instance, 
if we have an increase of 5% in the capacity of 
facilities, we will observe that total cost of fuzzy-
stochastic model will come near to $7203 with a 
reduction of 1.5%. This pattern will continue with 
a slight slope until it reaches $7101 while we have 
a 35-percent increase in the capacity of facilities. 
The cost difference between the two approaches 
comes from the fact that fuzzy approach estimates 
the value of uncertain parameters more realistic 
than that of the deterministic approach. 
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Figure 16. The impact of facilities disruption changes on the total supply chain cost; હ = ૙. ૠ 

Figure 17. The impact of facilities disruption changes on the total supply chain cost; હ = ૙.9 
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Figure 18. Total supply chain cost under fuzzy-stochastic and deterministic approaches; ࢻ = ૙. ૠ 

 

7. Conclusions  
Since the natural disasters are increasingly 
happening all over the world, blood supply in 
such emergency situations is of a great challenge 
considering the disasters direct impacts on 
humans and their emergency needs thereafter. 
This paper presents a fuzzy-stochastic 
programming model to design a BSC network for 
the efficient blood supply in disasters. The 
objective function aims to minimize the total 
supply chain costs regarding as the efficiency 
factor. In the proposed two-stage fuzzy-stochastic 
programming model, the number of blood 
facilities to be opened is decided at the first stage 
as there is no knowledge available of disasters, 
and blood collection and the frequency of 
transportation besides the level of inventory at the 
end of each period are specified at the second 
stage as the disaster scenarios are realized.   

To formulate the proposed model, a fuzzy 
programming approach is considered to cope 
with the uncertainty in model parameters. A 
credibility-based chance-constrained 
programming method is then applied to convert 
the proposed model into an auxiliary crisp one. 
The following valuable insights are provided 
through solving the proposed model. (1) the 
hybrid solution method (i.e., EV and CCP) 
benefits from the advantages such as simplicity 

by not increasing the number of constraints. It 
also does not require confidence level for 
objective functions. (2) an increase in credibility 
level would lead to a decrease in the system's cost 
savings. (3) if the capacity of blood facilities is 
enhanced from %5 to %30, if possible, cost 
savings will increase from %1 to %1.9. (4) a %10 
decrease in route reliability results in %3.8 
increase in the network total cost. (5) having a %5 
increase in facility disruption, we witness % 0.3 
decrease in cost savings. (6) as the referral rate 
increases, more facilities must be provided to 
respond the demand at the same service level. So, 
we will have an increase in the network cost.  

At the end, a real case study in Iran was 
conducted to evaluate the applicability of the 
proposed model. 

Future research could investigate other solution 
methods including heuristic or metaheuristic 
methods in the case the one presented in this 
paper would not be able to solve the problem of 
larger sizes. Other stochastic approaches could be 
also applied to the problem in order to compare 
the corresponding results with those of the 
proposed solution approach. Moreover, the 
routing problem could be simultaneously 
considered for the present model to improve the 
network costs. 
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