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Abstract:
Vehicle occupants comprise a considerable proportion of traffic crash victims in Iran. This paper has focused on ve-
hicle occupants’ injury severity and employed the Classification and Regression Tree (CART) technique in order to 
identify the most important variables affecting the injury severity of these road users in crashes occurred on rural free-
ways and multilane highways in Iran over a three year period (2006-2008). In the procedure adopted in this paper, the 
problem of three-class prediction was decomposed into four binary prediction models. Results revealed a high overall 
prediction accuracy of the models. Ten explanatory variables were considered in the current study in order to find the 
most important variables affecting the injury severity of occupants. In this regard, some “if-then” rules pertaining to 
the conditions that lead to more severe injuries are provided based on the decision tree analysis. Results confirm the 
already-known importance of seatbelt usage for preventing serious injuries in one hand, and imply the insufficiency 
of seatbelt usage for protecting the occupants from receiving serious injuries in some collision types, on the other 
hand. This underscores the need for more safety instruments (especially airbags for all occupants of the vehicle) to be 
installed in passenger cars in Iran. 
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1. Introduction
Completing a trip without injury or property damage has 
always been the primary concern of traffic engineers and 
traffic safety experts. The high rate of traffic crashes on 
Iran roads causes thousands of deaths, injuries, and eco-
nomic loss every year. During 2006-2008, three people per 
hour died on average, due to traffic crashes in Iran (i.e. 
an average number of 26,000 fatalities annually) [F.M.O.I, 
2012]. On the other hand, according to Iran Road Main-
tenance and Transportation Organization annual report 
in 2015, a considerable portion of road networks in Iran 
are comprised of rural freeways and multilane highways 
(19.7%), which constitute 16889 km of the total road net-
work [R.M.T.O, 2015]. According to the statistics, about 
two-thirds of the above-mentioned fatalities occurred on 
rural roads and one-third on urban roads. This reveals the 
importance of paying considerable attention to rural free-
way and multilane highways crashes in Iran.
Previous literature revealed that such factors as the loca-
tion and the cause of the crash [Al-Ghamdi, 2002], car 
size [Wood and Simms, 2002], use of a seatbelt, drinking 
alcohol and the age and the gender of the drivers [Delen, 
Sharda, and Bessonov, 2006] might influence the injury 
severity car occupants.
Furthermore, in their paper, Anarkooli, and Hosseinlou, 
(2016) investigated lighting condition differences in the 
injury severity of crashes occurred on two-lane rural roads 
of the state of Washington. They highlighted the impor-
tance of deploying street lights at and near intersections (or 
access points) on two-lane rural roads to reduce the injury 
severity of crashes. 
From the viewpoint of methodology, over the years, traffic 
safety experts and researchers have used a wide range of 
methods to assess the crash injuries, among which, Lo-
gistic regression, Multinomial logit and ordered probit 
models are the most popular models [Mirbaha, Saffarza-
deh, and Noruzoliaee, 2012; Pour-Rouholamin and Zhou, 
2016; Tavakoli Kashani, Rabieyan, and Besharati, 2015]. 
Savolainena, Mannering, Lord, and Quddus, (2011) have 
provided a thorough review of methodological alterna-
tives used in this field.
On the other hand, when dealing with a large amount of 
data, Data Mining (DM) techniques are the most practi-
cal approach in which, unlike most regression models, no 
assumptions are made regarding the underlying distribu-

tion of predictors and dependent variables. During the last 
decade, several data mining techniques including Classifi-
cation and Regression Trees(CART) method [Chang and 
Chen, 2005a; Tavakoli Kashani, Rabieyan, and Besharati, 
2014; Tavakoli Kashani, Shariat-Mohaymany, and Ran-
jbari, 2012], Bayesian Networks [Mujalli and De ONa, 
2011], Artificial Neural Networks [Delen, Sharda, and 
Bessonov, 2006] clustering analysis[Tavakoli Kashani and 
Besharati, 2016] and association rules discovery [Montella, 
2011] have been used to conduct analysis on the crash data.
The Classification and Regression Tree (CART) method, 
as one of the data mining techniques, is a useful tool to 
find the most appropriate predictors to classify the vari-
ables. The CART method can also handle numerical data 
that are highly skewed (such as traffic crashes) or multi-
modal, as well as categorical predictors with an ordinal 
or non-ordinal structure [Breiman, Friedman, Stone, and 
Olshen, 1984].
A review of past studies indicates that the CART method 
has successfully been employed in traffic safety research-
es. For instance, a study by Chang and Chen [Chang and 
Chen, 2005b] conducted a comparison between the nega-
tive binomial regression model and the CART method 
to analyse traffic road accidents on national freeways in 
Taiwan and concluded that the CART method is more ac-
curate than the regression model. Chang and Wang (2006) 
employed the CART method in Taiwan to explore the sig-
nificant relationship between the degree of injury severity 
and its associated explanatory variables. They found that 
the pedestrians, bicyclists, motorcyclists, and passengers 
were at more risk than drivers for severe injuries. In an-
other study conducted in Iran, the CART and the logistic 
regression methods were compared to find the relationship 
between human factors and the injury severity of road 
crashes [Pakgohar, Sigari Tabrizi, Khalili, and Esmaeili, 
2011].
Additionally, some previous studies focused on the issue 
of analysing crashes on freeways and multilane highways 
[Das and Abdel-Aty, 2010; Milton, Shankar, and Manner-
ing, 2008; Savolainena, Mannering, Lord, and Quddus, 
2011]. For instance, Das and Abdel-Aty, (2010) reported 
the vision obstruction and percentage of trucks as the vari-
ables that might lead to more severe crashes. Moreover, 
they reported that dry surface, wider shoulder and side-
walk widths decrease the crash severity.
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Based on these studies, traffic safety researchers have 
gained good knowledge about crash severity. However, 
a review of the previous literature showed that very few 
previous studies have focused on the risk factors that 
might influence the injury severity of vehicle occupants 
(excluding the driver) especially in crashes occurred on ru-
ral freeways and multilane highways. Therefore, the main 
purpose of the present research is to explore the most sig-
nificant factors affecting the injury severity of this group 
of road users in crashes occurred on rural freeway and 
multilane highways over three successive years (2006-
2008) in Iran, using the CART technique. It is noteworthy 
that the current study was conducted over all rural freeway 
and multilane highways in Iran. The geographical extent 
of this study might help to uncover interesting patterns in 
these type of crashes.

2. Methodology
2.1 Data
For this study, Iran crash data maintained by the Iran Traf-
fic Police from 2006 to 2008 has been used. These data are 
obtained from the Traffic Accident Record Form, KAM 
114. This form covers different characteristics of traffic 
crash including environmental, human and vehicle attri-
butes. In this database, the injury severity of the occupants 
involved in crash is recorded in terms of three levels: light 
injury, serious injury, and fatality. Evaluation of Injury se-
verity is based on assessment by law enforcement officers 
at the crash scene. In this regard, “Serious injury” is any 
injury other than fatal injury, which prevents the injured 
person from walking, driving, or normally continuing the 
activities he/she was capable of performing before the 
injury occurred and forces the patient to be admitted to 
hospital as an “in-patient”. In addition, “Light injury” is 
possible or evident injury that is non-incapacitating and 
is treated on an “outpatient” basis. It also should be noted 
that in the current study, by the term “vehicle occupants”, 
the authors mean those passengers of the vehicle (except 
the driver), that have experienced a light or serious injury 
or died in the crash. 
As the scope of the current study was to explore the influ-
encing factors affecting the injury severity of vehicle oc-
cupants (excluding drivers) in crashes occurred on rural 
freeway and multilane highways; thus, the data pertaining 
to crashes occurred on the two-way two lane highways as 

well as minor roads were excluded. Finally, 6798 records 
were identified, each of which representing the crash at-
tributes of a single occupant. 
As shown in Table 1, the injury severity of the passenger 
was set as the target variable. Furthermore, ten indepen-
dent variables were recommended to enter the CART 
model. In order to develop a CART model, the dataset 
might be randomly divided into 2 subsets of training and 
testing. Further explanations on this issue is provided 
in the subsequent sections. In this study, the model was 
trained by 70% of the data, and the remaining 30% was 
used in the testing process. 

2.2 The Classification and Regression Tree 
(CART) Method
Figure 1 presents the principle of the CART method in de-
veloping the classification tree. In this regard, the data are 
first concentrated at a node located at the top of the tree 
(called root node or parent node). Then, the observations 
in the root node are divided into two subsets (called child 
nodes) based on an independent variable (called splitter) 
that creates the best homogeneity. In other words,¬ the 
data in each child node are  more homogenous than those 
in the upper parent node. Next, one or both of these child 
nodes are further split into new subsets based on another 
splitter and this process is continued repeatedly until all 
the data in each child node have the greatest possible ho-
mogeneity or some stopping rules are triggered. Such a 
node that has no further branches is called a terminal node 
or leaf node (Figure 1). The fundamental idea is to select 
each split of a node so that the observations in each of the 
descendant nodes are purer or more homogeneous than 
those in the parent node. Thus, the principle behind tree 
growing is to recursively partition the target variable to 
minimize “impurity” in the terminal nodes.
There are several indexes for evaluating node impurity 
and growing the tree. The Gini index is one of the most 
common measures and is defined as: 
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Gini (m) represents the Gini index which is an indication 
of how impure or heterogeneous the node m is. In Eq. 1, j 
denotes the number of target variables or classes, P(j|m) is 
the conditional probability of a record in class j provided 
that it is in node m, π(j) is the prior probability considered 
for class j, Nj(m) is the number of records in class j of node 
m, and Nj indicates the number of records of class j. 
If all observations for one node belong to a specific class, 
then the   would be zero and this indicates the greatest ho-

mogeneity and purity in that node. The index for node m 
would reach its maximum value if there is the same ratio 
of observations in that node. The prior probability is an 
indicator for the percentage of observations in every class. 
Tree growth, based on the Gini index, starts from the root 
node, which contains all of the observations. 
In the CART method, tree growth will continue until there 
are only similar observations in each terminal node. In 
such a case, the maximal tree that over fits the training data 
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is created. As the maximal tree over fits the training data-
set, the tree classifier might have very small classification 
errors on the training dataset, but could perform poorly on 
a new testing dataset. Therefore, in the final step, the tree 
identified by the CART method is needed to be verified us-
ing an independent dataset which is called testing dataset. 
To lessen the complexity of the maximal tree, the 
CART method prunes the tree to an optimal size by the 
cost-complexity pruning method. In this regard, the 
‘‘misclassification error rate’’ or ‘‘misclassification cost’’ 
for each tree is calculated as
misclassification error rate = 
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to convert it into separate problems with two-class target 
variable (binary) through ones-vs-all (OVA) and all-vs-all 
(AVA) methods. However, the OVA and AVA cannot be 
employed in the present study since the target variable has 
three levels and combining the light injuries and fatalities 
into one class is rather misleading. To handle this problem, 
the previous literature proposed a method to consider the 
lower injury severity levels versus the higher injury sever-
ity levels (i.e. serious injuries combined with fatalities)
[Delen et al., 2006]. 
The combination of the target variables for the four mod-
els is presented in Table 3. As shown in model 1.1, the data 
on light injury and serious injury crashes were combined 
into one class and labeled as 0 and fatalities were catego-
rized into the other class with the label of 1. Therefore, 
this model might be labelled as “fatality vs. non-fatality” 
model. In model 2.2, the light injuries were not imported 
to the CART method and only the fatal and serious injuries 
were compared.
These four binary models resulted from combining the 
target variables were analysed by employing the CART 
method. For growing the tree, the Gini index was applied 
and the prior probabilities, π(j)s, were considered to be 
equal for all models. The prior probability indicates the 
proportion of each class in the population. However, when 
the proportion of one class is much more than that of an-

other class, and the prior probabilities for both classes are 
adjusted based on the proportion of each class in the train-
ing data, then, all the data in the dominant class will be 
predicted by the resulting model. Therefore, this would 
lead to an increase in the overall model accuracy. When 
examining the injury severity, since the percentage of fa-
tal crashes is commonly less than that of injury crashes, the 
prediction accuracy decreases. A previous study [Steinberg 
and Golovnya, 2007] suggested considering the equal prior 
probabilities and taking the variables with low proportions 
into consideration when the target variables have imbal-
anced proportions but have nearly the same prediction ac-
curacy importance. Although the overall model accuracy 
decreases by adopting this approach, the accuracy of pre-
dicting the data with the least proportion increases. Such 
improvements are essential and important to decision mak-
ers. Table 4 demonstrates the accuracy of the four developed 
models as well as the overall model for the training and test-
ing data. The accuracy of the overall model (Table 4) was 
improved between 17.3% and 22.81% compared to that of 
the models with three classes (Table 2). 

3.2 Variable Importance 
Table 5 presents the results of the relative importance of 
the variables for all binary models. As shown, in all mod-
els, the “cause of the crash” was identified as one of the 
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two most important variables. This is in line with findings 
of a previous study by Al-Ghadimi [Al-Ghadimi, 2002] in 
which the cause of the crash was reported to be a significant 
factor that increase the crash severity. Moreover, the seatbelt 
use in models 1.2 and 2.1 is the most important variable and 
in models 1.1 is among the three most important variables. 
It can be inferred from the corresponding decision trees that 
when the occupants do not fasten seatbelts the probability 
of receiving serious injuries increases. This is consistent 
with the findings of some previous studies [Bédard, Guyatt, 
Stones, and Hirdes, 2002; Delen et al., 2006; Sohn and Shin, 
2001; Valent et al., 2002]. It is noteworthy that, since the 
drivers were excluded from the dataset in this study, results 
suggest the importance of seat belt use for other car occu-
pants rather than the driver. In models 1.1 and 2.2 in which, 
fatality was considered as separate class, the collision type is 
also among the three most important variables. This imply 
that the type of collision is a significant factor that affects the 
fatality risk of occupants. 
In general, based on Table 5, when fatality vs. non-fatality 
among the car occupants was modelled as the outcome 
(model 1.1 and 2.2), “Cause of crash “, “Collision type” 
and “Seat belt” were among the most important variables. 
Moreover, When light injury vs. severe injury or fatality 
among the car occupants was modelled (model 1.2 and 
2.1), “Seat belt”, “Cause of crash” and “Occurrence loca-
tion’ were among the most important variables.

3.3 The Decision Tree
A substantial advantage of the decision tree over the other 
methods for decision makers is that the decision tree an-
swers “if-then” questions very clearly. As follows, the de-
cision tree for model 2.1 is illustrated in Figure 3. As pre-
viously stated, the binary outcome in this model is “light 

injury” vs. “at least serious injury”. As shown, node 0 as 
the parent or root node is split into one child node (node 
1) and one terminal node (node 2) based on the seatbelt 
use. This confirms the importance of the seatbelt use as 
a significant variable to predict the injury severity of car 
occupants. Node 2, as a terminal node presents the data 
related to no seatbelt use or the unknown conditions of 
seatbelt use. As displayed in Figure 3, in such conditions 
the occupants are predicted to receive at least a serious in-
jury (Class Label 1). On the left branch of the tree, there 
are four terminal nodes (Nodes 3, 5, 7, and 8). Node 1 on 
the left side pointing out to the cases in which the occupant 
used a seat belt, is then split into two other nodes based on 
the variable of crash occurrence location. As shown, for 
those occupants that used seatbelt, if the crash occurs on 
the shoulder, in the median, or outside of traffic way (node 
3), then the crash would be so severe that the occupant 
would at-least experience a serious injury (i.e. Class Label 
1). It can be inferred that although the occupants used their 
seatbelts, the severity of these types of crashes is so high 
that seatbelt might not be enough to prevent severe inju-
ries. This might indicate the need for more safety instru-
ments such as airbags to be installed in passenger cars not 
only for the driver but also for occupants.  
Node 5 implies that in those crashes occurred on the road 
way, on the roadside, or other conditions (i.e. cases 1, 4, or 
6), in which, the occupant used a seatbelt and the primary 
cause of the crash was either following too closely, ignor-
ing proper lateral distance, ignoring right of way, inability 
to drive, speeding, or crossing prohibited place (i.e. cases 
1, 2, 3, 5, 7, or 11),  the occupant is expected not to receive 
a serious injury. 
Additionally, node 7 indicates that for those passengers 
that used seatbelt, if the crash occurs because of the col-

Table 4. Prediction accuracy of models with binary class labels
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lision with animals or with fixed objects (i.e. cases 5 and 
6), the occupants are predicted to receive severe injuries 
(Class Label 1). In contrast, if the crash takes place due 
to collision with motorcycle/bicycle, with another vehicle, 
with more than on vehicle, overturn, or motorcycle col-
lision with pedestrian/bicycle  (i.e. cases 1, 2, 3, 7, or 9), 
the occupants would receive light injuries (Class Label 0).  
Finally, in terms of prioritizing traffic safety measures, one 
should focus on those factors that significantly affect seri-
ous injury. As presented in Figure 3, node 2 is of a great 
importance confirming the already-known significance of 
the seatbelt usage. Moreover, nodes 3 and 7 imply the in-
sufficiency of seatbelt usage for preventing serious injuries 
in some crash types. 

4. Conclusion
In this study, the CART algorithm was employed to ex-
plore the most significant factors affecting the injury se-
verity of vehicle occupants (excluding the drivers) in 
crashes occurred on rural freeways and multilane high-
ways in Iran. Results indicates that three variables of 
“cause of the crash”, “seatbelt use” and “collision type” 
significantly increase the injury severity of vehicle occu-
pants in crashes occurred on rural freeway and multilane 
highways. More specifically, the model predicted severe 

injuries for those occupants that did not used seat belt. This 
confirms the need for more law enforcement over seatbelt 
use for all vehicle occupants (not only drivers), as well as 
awareness campaigns about the importance of seat belt use 
for all vehicle occupants to reduce the injury severity of 
vehicle occupants. 
Moreover, results indicated that despite using seatbelt, if 1) 
the crash occurs on the shoulder, in the median, or outside 
of traffic way; or 2) the vehicle collides with an animal or 
fixed objects; then the crash would be so severe that fas-
tening seat belt could not be enough to protect the vehicle 
occupant from receiving severe injuries. This underscores 
the need for more safety instruments (especially airbag for 
vehicle occupants) to be installed in passenger cars in Iran. 
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