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Abstract:
Car-following models are among the most important components of micro traffic flow simulation which is studied 
by transportation experts to evaluate new applications of intelligent transportation systems. Until now, several car-
following models have been proposed. An obvious disadvantage of the former models is the great number of param-
eters which are difficult to calibrate. In this paper, a car-following model was modeled and developed by combining an 
Adaptive Neuro-Fuzzy Inference System (ANFIS) and a Classification And Regression Tree (CART) to simulate and 
predict future behavior of each driver-vehicle-unit (DVU). In this model, the reaction time was instantaneously calcu-
lated based on the time interval between acceleration and relative velocity by the proposed model and was considered 
as a new input. The results were compared with the fixed reaction time and the reaction time proposed by Ozaki. To 
evaluate the performance of the model, we compared the proposed model's output data with real conditions and it was 
found that the precision of the proposed model was significantly high with regard to the instantaneous reaction time. 
According the implemented simulation, the proposed model reached a good validity on the basis of proximity to a real 
situation of car-following.
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1. Introduction
Recently, traffic problems have made researchers to 
propose many models for studying different complex 
traffic phenomena [Chowdhury, Santen et al. 2000, 
Helbing 2001, Bellomo, Delitala et al. 2002, Klar and 
Wegener 2004]. Based on understanding complex traf-
fic behaviors, existing traffic flow models can be di-
vided into two categories, including (a) macroscopic in 
the former, i.e., traffic acts as a compressed fluid com-
posed of cars, and (b) microscopic models in the latter, 
i.e., each car is displayed as a component and the traf-
fic is considered as a system of interactive components 
which is driven away from equilibrium [Zhao and Gao, 
2005]. The car-following model is the basis of model-
ing of the driving behavior in micro traffic simulation. 
In the car-following models, the most well-known ef-
fective parameters are the speed of the front car, dis-
tance, and relative speed to determine the acceleration 
change of the behind car [Bando, Hasebe et al. 1995, 
Bando, Hasebe et al. 1998, Helbing and Tilch 1998, 
Treiber, Hennecke et al. 2000, Jiang, Wu et al. 2001, 
Ge, Cheng et al. 2005, Tang, Wu et al. 2011]. 
In our study, the objective variable is the acceleration 
changes of the behind car and the predictor variables 
are stimulants of the car-following flow, including the 
parameters of distance difference, velocity difference, 
and the speed of the front car. In addition, reaction time 
was entered into the model as new inputs to show the 
effect of these parameters on the accuracy of the car-
following model.
The paper is organized as follows: Section 2 provides 
an overview of the most important car-following mod-
els. Datasets used in this study are briefly introduced in 
Section 3. Section 4 provides a comprehensive intro-
duction to ANFIS and CART, describes the reason for 
combining these two methods, implements the model 
with real data of the traffic, and finally, evaluates the 
model performance given the instantaneous reaction 
time as a new input parameter. In Section 5, the pro-
posed methodology is thoroughly validated. Finally, 
Section 6 summarizes the results. 

2. Literature Review
In this section, a brief literature review of former car-
following models would be presented.

2.1 Former Car Following Models
Car-following models have been studied and investi-
gated for more than half a century. Pipes and Reuschel 
began working on the theory [Reuschel 1950, Pipes 
1953]. Each car individually makes acceleration chang-
es such as responses to peripheral stimuli. Thus, the 
motion equation for the follower vehicle can be sum-
marized as Response ∝ Stimulus [Yan-lin and Tie-jun 
2002]. This section presents four famous and general 
car-following models:

2.1.1 Gazis-Herman-Rothery (GHR) Model
The GHR model is one of the earliest and best-known 
models in a way many studies have been done based on 
it. Its original formula is shown below [Brackstone and 
McDonald, 1999]: 
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,                                                                                                                                       (1) 

where 𝑎𝑎𝑛𝑛 is the acceleration of following vehicle implemented at time t, 𝑉𝑉𝑛𝑛 is the speed of the 

following vehicle, ∆𝑋𝑋 and ∆𝑉𝑉 are the distance headway and relative speeds between the following 

and leading vehicle, respectively, T is the driver reaction time, and m, l, and C are the constants that 

must be determined. 

 

2.1.2 Collision Avoidance (CA) Model 

A mathematical model for the collision avoidance state was introduced by Kometani and Sasaki as 

follows [Kometani and Sasaki 1959]: 

∆𝑋𝑋(𝑡𝑡 − 𝑇𝑇) = 𝛼𝛼 𝑉𝑉𝑛𝑛−1
2 (𝑡𝑡 − 𝑇𝑇) + 𝛽𝛽1𝑉𝑉𝑛𝑛2(𝑡𝑡) + 𝛽𝛽2𝑉𝑉𝑛𝑛(𝑡𝑡) + 𝛿𝛿,                                                                           (2) 

                                                                               (1)

where an is the acceleration of following vehicle im-
plemented at time t, Vn is the speed of the following 
vehicle, ∆X and ∆V are the distance headway and rela-
tive speeds between the following and leading vehicle, 
respectively, T is the driver reaction time, and m, l, and 
C are the constants that must be determined.

2.1.2 Collision Avoidance (CA) Model
A mathematical model for the collision avoidance state 
was introduced by Kometani and Sasaki as follows 
[Kometani and Sasaki 1959]:
∆X(t-T) = αV(n-1)

2(t-T) + β1Vn
2(t) + β2Vn(t) + δ,         (2)

where V(n-1) is the leading vehicle velocity, and α, β1, β2 
,δ are the constant coefficients to be determined. The 
calculations in this model are based on optimal distance 
to avoid collision with the front car. 

2.1.3 Linear Model
The linear or Helly model is the extension of GHR 
model. The equation of this model is as follows [Brack-
stone and McDonald 1999]: 
an(t) = ρ1∆V(t-T) + ρ2(∆X(t-T) - Dn(t)),                        (3)
Dn(t) = α + βVn(t-T) + γan(t-T),                                                        (4)
where Dn(t) is the desired following distance at time t 
and ρ1, ρ2, α, β, γ are the constant coefficients to be de-
termined.
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2.1.4 Gipps Model
One of the most important developments done on the 
CA model was in 1981 by Gipps [Brackstone and Mc-
Donald 1999]. He considered several drivers’ behavior 
factors overlooked in the previous model. High compu-
tational cost for calibration of parameters is the main 
disadvantage for this model. Eq. (5) demonstrates the 
Gipps model used in this paper:
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𝑚𝑚𝑚𝑚𝑚𝑚 𝑉𝑉𝑛𝑛
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1
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where Af = 1.7, Bf=  3, Bl

^ = 3.5 and S = 6.5. And ∆X is 
the space length between the follower and the leader ve-
hicles. Also, S is the safety distance that is based on the 
maximum velocity of vehicles. So, ∆X < S corresponds 
to an incident, which may involve the vehicle crash-
ing. This parameters are selected according to [Wilson 
2001].

3. Dataset
The real data for the car-following flow from US Fed-
eral Highway Administration’s Next Generation Simu-
lation (NGSIM) dataset [Cambridge Systematics Inc., 
2005] was used to determine and evaluate the perfor-
mance of the proposed model. Some properties of NG-
SIM data are as follows:
- To support the expansion of microscopic driver be-
havior algorithms, the Next Generation SIMulation 
(NGSIM) program is collecting detailed, high-quality 
traffic datasets which this enrichment in dataset does 
not exist in any other dataset. Until now, many of dis-
sertation and papers were used this dataset [Chen, Laval 
et al. 2012, Khodayari, Ghaffari et al. 2012, Khodayari, 
Ghaffari et al. 2012, Laval, Toth et al. 2014, Monteil, 
Billot et al. 2014, da Rocha, Leclercq et al. 2015, Liu, 
Zhu et al. 2016]. NGSIM stakeholder groups identified 
that the collection of real-world vehicle trajectory data 
is an important dataset for researching on microscopic 
driver behavior. The NGSIM datasets represent the 
most detailed and accurate field data collected to deal 
for traffic microsimulation research and development.
- It is very detailed datasets collected in 2005.

- Freeway I-80 in Emeryville, California (3 quarter 
hours) 
- Freeway US-101 in Los Angeles, California (3 quarter 
hours) 
- The arterial of Lanker Shim Boulevard in Los Ange-
les, California (2 quarter hours) 
- The arterial of Peachtree Street in Atlanta, Georgia (2 
quarter hours) 
- Recording the position of cars in every 0.1 seconds 
using high-accuracy cameras 
In this paper, the car-following modeling was per-
formed using micro data on the Freeway US-101 traf-
fic flow in Los Angeles, California. This traffic data is 
related to a quarter of an hour from 8:20 to 8:35 A.M. 
on January 15, 2005, i.e., the primarily congested con-
ditions, including the trajectory of 1870 automobile and 
about more than 1.5 million records. Each record con-
tains 18 information fields representing the motion sta-
tus of each car in 0.1 seconds shown in Table 3. Table 1 
shows the number of vehicles according to their types, 
and Table 2 demonstrates the mean speed vehicle and 
the traffic flow for each lane. Figure 1 shows the plan of 
studied cross section in this highway. 

3.1 Conditions of Data for Using in Car Follow-
ing Modeling
Among the total data, a suitable sample was selected to 
determine the car following positions based on the fol-
lowing conditions [Kim 2005, Kim et al. 2003]: 
- Both front and behind vehicles are cars.
- No vehicle should change the lane in the car-following 
duration, and a third vehicle should not be placed be-
tween them.
- The car-following duration must be at least 30 sec-
onds.
Under these conditions, the micro-information of the 
car following flow was extracted in this paper.

3.2 Alleviate the Noise in Data with the Wavelet 
Method
After the initial observation of noise in the collected 
data [Punzo, Borzacchiello et al. 2011], a wavelet de-
noising technique was used for alleviating the noise in 
the data. Figure 2 illustrates the procedure of denoising 
by wavelet technique [Tsai 2002].
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Table 1. Number of vehicles according to their types 

Vehicle Type Number of vehicles Percentage 

Motorcycle 5 0.3% 

Automobile 1870 97.6% 

Truck and Buses 40 2.1% 

Sum 1915 100% 
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Table 2. Mean speed of vehicles and traffic flow for each lane 

Lane 

Identification 

Mean Speed 

(m/s) 

Flow (Vehicle per 

hour) 

1 8.95 1394 

2 9.31 1460 

3 9.27 1390 

4 9.48 1374 

5 9.68 1490 

Average 9.34 7108 

 

Table 3. Vehicle Trajectory File Data Dictionary 

Col Name Description 

1 Vehicle ID Vehicle identification number 

2 Frame ID Frame Identification number 

3 Total Frames Total number of frames in which the vehicle appears in this data set. 

4 Global Time (Epoch Time) Elapsed time since Jan 1, 1970. 

5 Local X Lateral (X) coordinate of the front center of the vehicle 

6 Local Y Longitudinal (Y) coordinate of the front center of the vehicle 

7 Global X 
X Coordinate of the front center of the vehicle based on CA State 

Plane III in NAD83. 

8 Global Y 
Y Coordinate of the front center of the vehicle based on CA State 

Plane III in NAD83. 

9 Vehicle Length Length of vehicle 

10 Vehicle Width Width of vehicle 

11 Vehicle Class Vehicle type: 1 - motorcycle, 2 - auto, 3 - truck 

12 Vehicle Velocity Instantaneous velocity of vehicle 

13 Vehicle Acceleration Instantaneous acceleration of vehicle 

14 Lane Identification Current lane position of vehicle. 

15 Preceding Vehicle Vehicle Id of the lead vehicle in the same lane. 

16 Following Vehicle 
Vehicle Id of the vehicle following the subject vehicle in the same 

lane. 

17 Spacing (Space Headway) 
Spacing provides the distance between the front-center of a vehicle to 

the front-center of the preceding vehicle. 

18 Headway (Time Headway) 
Headway provides the time to travel from the front-center of a vehicle 

to the front-center of the preceding vehicle. 
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After the initial observation of noise in the collected data [Punzo, Borzacchiello et al. 2011], a 

wavelet denoising technique was used for alleviating the noise in the data. Figure 2 illustrates the 

procedure of denoising by wavelet technique [Tsai 2002]. 
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following figure compares the real data and the data filtered by the Symlets wavelet.  
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Figure 2. The general procedure of denoising by the wavelet
In this research, the Symlets wavelet at the forth order 
was used [Misiti, Misiti et al. 1996]. The following fig-
ure compares the real data and the data filtered by the 
Symlets wavelet. 

4. Proposed Methodologies
In this section, the steps of car following modeling 
based on combining the Adaptive Neuro Fuzzy Infer-
ence System (ANFIS) and the Classification and Re-

gression Tree (CART) methods would be described. 
Figure 4 presents the flow chart of the main steps in 
this study.
 
4.1 Classification and Regression Tree (CART)
The CART model is a non-parametric one, without any 
default for the relationship between the independent 
variables and the objective variable. It is an important 
data mining method and is widely used in business, 
industry, engineering, and other applied sciences. The 
CART model is a powerful tool in determining the most 
important independent variables and solving prediction 
and categorization problems [Loh 2008]. In general, 
methods based on linear models divide quantitative 
variables space into separate areas and allocate data to 
corresponding groups. These methods divide data re-
cursively to determine the interactions between vari-
ables for further detections. Depending on the type of 
the main objective problem in a study, the classification 
and regression tree models can establish a precise clas-
sification or detect a predictor structure for the desired 
problem. If the goal is to determine a predictor struc-

Figure 1. U.S Highway 101 (Hollywood Freeway) in Los Angeles, California
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3.1 Conditions of Data for Using in Car Following Modeling 

Among the total data, a suitable sample was selected to determine the car following positions 

based on the following conditions [Kim 2005, Kim et al. 2003]:  

 Both front and behind vehicles are cars. 

 No vehicle should change the lane in the car-following duration, and a third vehicle 

should not be placed between them. 

 The car-following duration must be at least 30 seconds. 

Under these conditions, the micro-information of the car following flow was extracted in this 

paper. 

 

3.2 Alleviate the Noise in Data with the Wavelet Method 
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4.1. Classification and Regression Tree (CART) 

The CART model is a non-parametric one, without any default for the relationship between the 

independent variables and the objective variable. It is an important data mining method and is 

widely used in business, industry, engineering, and other applied sciences. The CART model is 
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and categorization problems [Loh 2008]. In general, methods based on linear models divide 
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Figure 4. The proposed methodology flow chart
ture, understanding the variables and their interactions 
will become essential. In different problems, these two 
objectives are examined in parallel [Morgan and Son-
quist 1963]. If the decision tree performs the modeling 
using an objective variable with nominal values, it is 
called classification tree, and if it performs the model-
ing using an objective variable with continuous values, 

it is called a regression tree. The use of regression trees 
refers to the automatic interaction detection program 
introduced by Morgan and Sonquis [Morgan and Son-
quist 1963]. This method was modified and extended 
by Breiman [Breiman, Friedman et al. 1984]. The clas-
sification and regression tree algorithm contains three 
important tasks. The first task is ‘how to segment data 
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at each step?’ The second task is ‘when to stop segmen-
tation?’ The last one is ‘how to predict the value Y for 
each X in a segment?’[Loh, 2008]. This method is at-
tractive and unique for models for three main reasons. 
First, it shows the model results in a way that is easy to 
understand and simulate by human. Second, the deci-
sion tree is a non-parametric model. It does not require 
user intervention and is very suitable for the pursuit of 
exploratory knowledge. Third, the algorithm is ratable; 
in other words, the satisfactory performance of ratings 
is associated with the increasing size of the training 
sample. This is the case for the decision tree of built 
models and the accuracy of decision tree is equivalent 
or superior to other models [Timofeev 2004]. The re-
gression tree cannot be classified. Instead, the solu-
tion vector Y represents the solution values for each 
observation in the matrix of variable X. Separation 
is made in the regression tree in accordance with the 
least squares of residuals method, given the total vari-
ance expected for two conclusions of nodes. Regres-
sion trees do not have classes. Instead, there is re-
sponse vector Y, which represents the response values 
for each observation in variable matrix X. It should 
be mentioned that the splitting rules of classification, 
e.g., Twoing or Gini, can not be performed because 
of lacking pre-assigned classes for regression trees 
[Timofeev 2004]. The squared residuals minimization 
algorithm is used for splitting the regression trees. In 
this regard, for two resulting nodes, Eq. (6) is mini-
mized [Timofeev 2004]: 
arg min [Pl Var(Yl)+Pr Var(Yr)]                                  (6)
where Var(Yl) and Var(Yl) are the response vectors for 
the corresponding left and right child nodes. Pl and Pr 
are the probabilities of left and right nodes of parents, 
respectively. xj≤xj

R  ,j=1,2,…,M, are the optimum sepa-
ration questions, each of which is the satisfaction condi-
tion of the above formula [Dobra 2002], where xj is the 
variable j and  xj

R is the best splitting value of variable 
xj. See [Breiman, Friedman et al. 1984] for more infor-
mation. 
In this paper, due to the existence of a continuous objec-
tive variable, we used the regression tree and consid-
ered data for relative velocity, relative distance, speed 
of the front car, and the driver's reaction time as input 
stimuli and considered the acceleration changes propor-
tional to these stimuli as the desired output.

4.2 Adaptive Neuro-Fuzzy Inference System 
(ANFIS)
The adaptive network of fuzzy inference system is 
based on fuzzy logic. This section addresses the main 
structure of ANFIS. You can see [Cruz and Mestrado 
2009] for more details. Here, we describe a simple ex-
ample of ANFIS structure algorithm and its operational 
steps. The ANFIS system is based on the functional 
equivalence subject to certain constraints between the 
neural network and the fuzzy systems of Takagi, Sug-
eno and Kang (TSK) type [Lezanski 2001]. The output 
is calculated by inputs weighted based on fuzzy rules. 
These rules are based on human knowledge and deter-
mined by computational algorithms based on neural 
networks. In order to assume an ANFIS model that can 
function properly, special attention should be paid to the 
number of basic parameters, the system rules, and the 
number of inputs. Generally, ANFIS is a fuzzy infer-
ence system which is defined in the work structure of an 
adaptive neural network using a combinational training 
procedure. The ANFIS system is capable of mapping 
inputs and outputs based on human knowledge and the 
input and output pair data [Geronimo, Cruz et al. 2013]. 
The ANFIS method is superior to other methods such 
as autoregressive models and linear prediction methods 
[Geronimo, Cruz et al. 2013].
Suppose a first-degree TSK fuzzy inference system 
[Takagi and Sugeno 1985] that contains the two follow-
ing rules: 
Rule1: if x is A1 and y is B1, then f1 = p1x + q1y + r1,
Rule 2: if x is A2 and y is B2, then f2 = p2x + q2y + r2,
In this regard, Figure 5 shows the mechanism of fuzzy 
reasoning and these rules in our case could be as fol-
lows:
Rule1: if Velocity is high and Headway is short, then 
Acceleration=p1 Velocity+q1 Headway+ r1

Rule2: if Velocity is slow and Headway is large, then 
Acceleration=p2 Velocity+q2 Headway+ r2

Figure 6 shows the architecture of ANFIS and its layers 
where each layer is described below:
Layer 1: Each node in this layer creates the degree of 
membership of the Linguistic variable according to the 
functions of the desired degree of membership. For ex-
ample, by regarding the degree of “Gaussian” shaped 
membership function, for the ith node, we have the fol-
lowing formula (see reference [Zhao and Bose 2002] 
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 Rule 2: if Velocity is slow and Headway is large, then  

Acceleration=p2 Velocity+q2 Headway+ r2 

 

 
Figure 5. The first-order TSK fuzzy model [Jang, Sun et al. 1997] 

 

 

Figure 6. The architecture of an ANFIS with two inputs and one output [Jang, Sun et al. 1997] 

 

Figure 6 shows the architecture of ANFIS and its layers where each layer is described below: 

Layer 1: Each node in this layer creates the degree of membership of the Linguistic variable 

according to the functions of the desired degree of membership. For example, by regarding the degree 

of “Gaussian” shaped membership function, for the ith node, we have the following formula (see 

reference [Zhao and Bose 2002] to learn about other degree of membership functions):  
12 

 

 Rule 2: if Velocity is slow and Headway is large, then  

Acceleration=p2 Velocity+q2 Headway+ r2 

 

 
Figure 5. The first-order TSK fuzzy model [Jang, Sun et al. 1997] 

 

 

Figure 6. The architecture of an ANFIS with two inputs and one output [Jang, Sun et al. 1997] 

 

Figure 6 shows the architecture of ANFIS and its layers where each layer is described below: 

Layer 1: Each node in this layer creates the degree of membership of the Linguistic variable 

according to the functions of the desired degree of membership. For example, by regarding the degree 

of “Gaussian” shaped membership function, for the ith node, we have the following formula (see 

reference [Zhao and Bose 2002] to learn about other degree of membership functions):  

Figure 5. The first-order TSK fuzzy model [Jang, Sun et al. 1997]

Figure 6. The architecture of an ANFIS with two inputs and one output [Jang, Sun et al. 1997]

to learn about other degree of membership functions): 

13 
 

𝑁𝑁𝑖𝑖
1 = 𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥) = 1

1+exp(−𝑎𝑎𝑖𝑖(𝑥𝑥−𝑐𝑐𝑖𝑖 )) .                                                                                                                             (7)  

where 𝑁𝑁𝑖𝑖
𝑗𝑗 represents the output of the ith node, x is the input of the ith node, Ai is the linguistic variable 

corresponding to that node, and (ai, ci) are parameters that change the membership function.  

Layer 2: In this firing strength layer, each rule is calculated according to the following formula:  

𝑁𝑁𝑖𝑖
2 = 𝑤𝑤𝑖𝑖 = 𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥) ∗ 𝜇𝜇𝐵𝐵𝑖𝑖(𝑥𝑥).    𝑖𝑖 = 1.2.                                                                                                                   (8) 

Layer 3: This layer calculates the ratio of rules' strength firing for the ith node to the sum of all the 

rules' firing strength as follows: 

𝑁𝑁𝑖𝑖
3 = 𝑤𝑤𝑖𝑖̅̅ ̅ = 𝑤𝑤𝑖𝑖

𝑤𝑤1+𝑤𝑤2
   . 𝑖𝑖 = 1.2.                                                                                                                                   (9) 

Layer 4: Node i in this layer has the following node function: 

𝑁𝑁𝑖𝑖
4 = 𝑤𝑤𝑖𝑖̅̅ ̅𝑓𝑓𝑖𝑖 = 𝑤𝑤𝑖𝑖̅̅ ̅(𝑝𝑝𝑖𝑖𝑥𝑥 + 𝑞𝑞𝑖𝑖𝑦𝑦 + 𝑟𝑟𝑖𝑖).                                                                                                                             (10)  

where 𝑤̅𝑤𝑖𝑖 is the output of the third layer and pi, qi, ri is its parameter set. 

Layer 5: This layer calculates all the output such as the sum of all input signals as follows:  

𝑁𝑁𝑖𝑖
5 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = ∑ 𝑤𝑤𝑖𝑖̅̅ ̅𝑖𝑖 𝑓𝑓𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖 𝑓𝑓𝑖𝑖𝑖𝑖

∑ 𝑤𝑤𝑖𝑖𝑖𝑖
.                                                                                                                 (11) 

In the same way, an adaptive network is created which functions similar to a fuzzy inference system 

which is called Adaptive-Neuro Fuzzy Inference System (ANFIS). 
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consider the decision tree in Figure 7 which is equiva-
lent to the crisp rule set: 
 
if x>a and y>b, then z = f1                                        (12)
if x>a and y<b, then z = f2                                         (13)
if x<a and y>c, then z = f3                                           (14)
if x<a and y<c, then z = f4                                         (15)
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Figure 7. Binary decision tree 

Accordingly, each input fires one of these rules and other rules are not enabled. This crispness 

reduces the computational load in the tree structure using the CART but it undesirably creates 

discrete boundaries. Hence, the fuzzy logic is used to solve this problem. In the proposed method of 

this paper, when x > c, it can be presented by the following sigmoidal function with fuzzy logic 

features. 

 

𝜇𝜇𝑥𝑥>𝑎𝑎(𝑥𝑥; 𝑎𝑎, 𝛾𝛾) = 𝑠𝑠(𝑥𝑥; 𝑎𝑎, 𝑐𝑐, 𝛾𝛾) =

{
 
 
 
 0                                          𝑖𝑖𝑖𝑖 𝑥𝑥 ≤ 𝑐𝑐 − 𝑎𝑎
0.5[𝑥𝑥−(𝑐𝑐−𝑎𝑎)𝑎𝑎 ]2𝛾𝛾                 𝑖𝑖𝑖𝑖 𝑐𝑐 − 𝑎𝑎 < 𝑥𝑥 ≤ 𝑐𝑐
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where x is the input to node; and {a, c , γ} is the pa-
rameter set that changes the shape of the membership 
function. c locates distance from the origin and a de-
termines steepness of the function. If a is positive, the 
MF will be open to the right, whereas if it is negative, 
it will be open to the left. The former represents the 
concept of “very large positive”, whereas the later rep-
resents “very large negative” in linguistic terms [Zhao 
and Bose 2002].
Based on the fuzzy version of rules in the above crisp 
functions, we can obtain another class of an adaptive 
network, i.e., ANFIS, to identify prior and posterior pa-

rameters of the fuzzy inference systems. In this case, 
the first layer calculates the degree of membership of 
input variables by the selected membership functions. 
In the second layer, the obtained degree of membership 
is multiplied by the firing strength detected for each 
rule. The share of each rule is calculated based on the 
firing strength given in the third layer, and finally, all 
outputs of this fuzzy inference system are obtained in 
the fourth layer [Jang, 1994]. 

4.3.1 Defining Driver’s Reaction Time
In this study, different methods were investigated 
for determining the reaction time. Initially, the ob-
served instantaneous reaction time was calculated 
according to the GHR model, defined in Eq. (1). In 
this model, according to [Brackstone and McDon-
ald 1999] the values of parameters l, m, C were de-
termined. Based on theory proposed by Khodayari 
[Khodayari, Ghaffari et al. 2012], the driver reac-
tion time is defined by the time interval between 
relative speed as stimulus and acceleration as re-
sponse. Figures 8 demonstrate this time interval in 
the dataset used in this paper. 

4.3.1.1 Calculating Instantaneous Reaction Time Based on 
ANFIS-CART
For calculating the instantaneous reaction time with 
the proposed model, the inputs including the veloc-
ity of leading vehicle, the relative velocity between 
leading and following vehicle, the spacing between 
these vehicle, and the acceleration of following ve-
hicle, as well as the observed reaction time with GHR 
model were considered. 70 percent of this data per 
lane was allocated as training data and the remained 
data was considered as the test data for demonstrat-
ing the accuracy and calibrating the proposed model in 
determination of instantaneous reaction time. The fol-
lowing figure shows the instantaneous reaction time 
outperformed by the proposed ANFIS-CART model.
In addition, Ozaki proposed a model to determine the 
reaction time according to both increasing and de-
creasing accelerations using a piecewise linear func-
tion [Ozaki 1993]. This model was re-calibrated by the 
sample data in this study and the following equations 
were obtained for both increasing and decreasing ac-
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In addition, Ozaki proposed a model to determine the reaction time according to both increasing and 

decreasing accelerations using a piecewise linear function [Ozaki 1993]. This model was re-

calibrated by the sample data in this study and the following equations were obtained for both 

increasing and decreasing accelerations.  
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When deceleration occur, reaction time = 0.76 + 0.017 Spacing + 0.04 𝑎𝑎𝑛𝑛 ,                                 (18) 

 

where 𝑎𝑎𝑛𝑛 is the acceleration of following vehicle implemented at time t and Spacing is the distance 

headway between the following and leading vehicles. 

As well as these two methods, three fixed reaction times were considered which include fixed 

reaction times of 0.5, 1, and 1.5 seconds.  

 

4.3.2 The Car Following Modeling  

To show the effect of instantaneous reaction time on simulating real vehicle movements, a car-

following model is needed. The car-following model considered in this study is also based on 

combining ANFIS and CART methods. The output of the car-following model in this study is the 

acceleration/deceleration of the following vehicle in the next time step. The inputs are the current 

speed of leading vehicle, relative speed, the spacing of the following vehicle, and the reaction time. 

4.3.2.1. Car Following Modeling by Considering Instantaneous Reaction Time 

celerations. 
When acceleration occur, reaction time = 0.91 + 
0.01Spacing + 0.04  an,                                                    (17)
When deceleration occur, reaction time = 0.76 + 
0.017Spacing + 0.04 an,                                                 (18)
where an is the acceleration of following vehicle imple-
mented at time t and Spacing is the distance headway 
between the following and leading vehicles.
As well as these two methods, three fixed reaction times 
were considered which include fixed reaction times of 
0.5, 1, and 1.5 seconds. 

4.3.2 The Car Following Modeling 
To show the effect of instantaneous reaction time on 
simulating real vehicle movements, a car-following 
model is needed. The car-following model consid-
ered in this study is also based on combining ANFIS 
and CART methods. The output of the car-following 
model in this study is the acceleration/deceleration 
of the following vehicle in the next time step. The 
inputs are the current speed of leading vehicle, rela-
tive speed, the spacing of the following vehicle, and 
the reaction time.
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4.3.2.1 Car Following Modeling by Considering Instanta-
neous Reaction Time
For modeling the car-following based on the ANFIS-
CART using micro data on traffic flow and taking into 
account different methods of determining the reaction 
time, we implemented 3 car-following states which are 
related to different lanes of the US101 Highway. The 
results of this modeling in different states of reaction 
time can be seen in Figure 10. 

4.3.2.2 Car Following Modeling with Most Dominant 
Models
Finally, the parameters of the Helly model [Eq (3)] 
are selected according to [Brackstone and McDonald 
1999]. The Gipps model was also implemented using 
[Eq (5)]. The Gipps parameters also were selected ac-
cording to [Brackstone and McDonald 1999]. Figure 11 
demonstrates the difference among Helly model, Gipps 
model, and the real data.

5. Validation of Methodology
Two measures are employed to validate the proposed 
methodology. The first measure is the mean square 
error [Eq. (19)]. The second measure is the Index of 
agreement [Eq. (20)]. Moreover, micro simulation vali-
dation was carried out, too. 

5.1 Statistical Validation 
To demonstrate the accuracy of the proposed model, the 
following criteria were used: 
- The Mean Square Error (MSE) was used to deter-
mine the accuracy of the model. The following equa-
tion shows the calculations of the measure of accuracy 
[Levinson, 1947]: 
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- Index of agreement (d) indicates the extent to which 
the predicted values are error-free. The closer the value 
of this parameter becomes to 1, the better our model of 
prediction will be. The following equation shows this 
index formula [Robinson 1957]:
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where y'(ti) is the value predicted by the model with 
instantaneous reaction time, y(ti) is the real value or the 
test data value, and 
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where 𝑦𝑦′(𝑡𝑡𝑖𝑖) is the value predicted by the model with instantaneous reaction time, 𝑦𝑦(𝑡𝑡𝑖𝑖) is the real 

value or the test data value, and 𝑦̅𝑦 is the mean values of real data. Table 4 summarizes the statistical 

results of the model for various states. 

 

Table 4. Statistical summary for each observed and simulated vehicle (E and d are mean square error, and 

index of agreement, respectively) 

Lanes ID 

The proposed 

method with 

Instantaneous 

Reaction 

Time 

Model 

with 

Ozaki 

Reaction 

Time 

[Ozaki, 

1993] 

The 

proposed 

method 

with  

Constant 

Reaction 

Time 0.5 

The 

proposed 

method 

with 

Constant 

Reaction 

Time 1 

The 

proposed 

method 

with 

Constant 

Reaction 

Time 1.5 

Lane 1 
E                      

d 

0.26              

78% 

0.29              

76% 

0.35             

76% 

0.54             

70% 

0.34             

76% 

Lane 2 
E                      

d 

0.30              

78% 

0.32              

77% 

0.30             

75% 

0.31             

74% 

0.33             

75% 

Lane 3 
E                      

d 

0.38              

77% 

0.39              

77% 

0.98             

48% 

0.55             

62% 

0.35             

70% 

Mean value 
E                      

d 

0.31           

77.6% 

0.33           

76.6% 

0.54             

66.3% 

0.47             

68.6% 

0.34             

73.6% 

 

 

 

 

 

 

 

 

 

 

 is the mean values of real data. 
Table 4 summarizes the statistical results of the model 
for various states.
Based on the above tables, by considering the instanta-
neous reaction time, the proposed model yields the best 
statistical parameters for all lanes of the route.

Figure 10. Predicting results of the different reaction times
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For modeling the car-following based on the ANFIS-CART using micro data on traffic flow and 

taking into account different methods of determining the reaction time, we implemented 3 car-

following states which are related to different lanes of the US101 Highway. The results of this 

modeling in different states of reaction time can be seen in Figure 10.  
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4.3.2.2 Car Following Modeling with Most Dominant Models 

Finally, the parameters of the Helly model [Eq (3)] are selected according to [Brackstone and 

McDonald 1999]. The Gipps model was also implemented using [Eq (5)]. The Gipps parameters also 

were selected according to [Brackstone and McDonald 1999]. Figure 11 demonstrates the difference 

among Helly model, Gipps model, and the real data. 
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5.2 Microscopic Validation
In this section, we show the validity of the proposed 
model using the micro-simulation technique. After de-
termining the model accuracy using the error test with 
the least squares error and showing the output disper-
sion of models with the real data and the use of index of 
agreement  parameter as the determinant of prediction 
accuracy in the previous section, we considered High-
way US101 and the three lanes on which data was col-
lected.
During the simulation, two cars were assumed for each 
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Table 4. Statistical summary for each observed and simulated vehicle (E and d are mean square error, and index of 
agreement, respectively)

Table 5. Statistical summary for former models based on 
the mean value of three lanes
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Table 5. Statistical summary for former models based on the mean value of three lanes 

 MSE R2 

Helly model 1.453 0.12 

Gipps model 0.89 0.18 

GHR model 0.72 0.22 

CA model 0.78 0.23 

 

Based on the above tables, by considering the instantaneous reaction time, the proposed model yields 

the best statistical parameters for all lanes of the route. 

 

5.2 Microscopic Validation 

 

In this section, we show the validity of the proposed model using the micro-simulation technique. 

After determining the model accuracy using the error test with the least squares error and showing 

the output dispersion of models with the real data and the use of index of agreement  parameter as 

the determinant of prediction accuracy in the previous section, we considered Highway US101 and 

the three lanes on which data was collected. 

During the simulation, two cars were assumed for each lane: one as the front car and the other as the 

follower car. The front car started moving with the speed available at the collected data and the 

follower car instantaneously calculated the acceleration based on the proposed model of this paper 

by understanding the speed of the front car, their distance, and the relative speed. Based on this 

acceleration, displacement was calculated for the next moment. Simulation was performed during 

0.1-second steps and it was found that the proposed model has a good validity on the basis of 

proximity to a real situation of car-following in its simulation. Figure 13 depicts simulation results 

in three lanes considered for this purpose for 30 seconds. 
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lane: one as the front car and the other as the follower 
car. The front car started moving with the speed avail-
able at the collected data and the follower car instanta-
neously calculated the acceleration based on the pro-
posed model of this paper by understanding the speed 
of the front car, their distance, and the relative speed. 
Based on this acceleration, displacement was calculated 
for the next moment. Simulation was performed dur-

ing 0.1-second steps and it was found that the proposed 
model has a good validity on the basis of proximity to a 
real situation of car-following in its simulation. Figure 
13 depicts simulation results in three lanes considered 
for this purpose for 30 seconds.
The simulation results based on the following vehicle’s 
displacement, velocity, and trajectory are plotted in Fig-
ures 13 to 15.
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Figure 12. The simulation prototype 

 

 

The simulation results based on the following vehicle’s displacement, velocity, and trajectory are plotted 

in Figures 13 to 15. 

Figure 12. The simulation prototype
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Figure 13. Simulation result of following vehicle’s displacement 

 

Figure 14. Simulation result of following vehicle’s speed 

Figure 13. Simulation result of following vehicle’s displacement
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According to Figure 13, the curves of ANFIS-CART 
based model outputs fit the field data well. The follow-
ing speeds calculated by the proposed model seems to 
be as smooth as the field data. For the trajectory, the 
model fit to the field data well and the errors are within 
10 meters.

6. Conclusion 
Car-following models are among the most important 
topics in the field of traffic simulation at the micro lev-
el. All famous models that are used today include a set 
of parameters that require careful calibration. To solve 
this problem, this paper uses a combination of ANFIS 
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Figure 13. Simulation result of following vehicle’s displacement 

 

Figure 14. Simulation result of following vehicle’s speed 
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Figure 15. Simulation result of following vehicle’s trajectory 

 

According to Figure 13, the curves of ANFIS-CART based model outputs fit the field data well. The 

following speeds calculated by the proposed model seems to be as smooth as the field data. For the 

trajectory, the model fit to the field data well and the errors are within 10 meters. 

 

6. Conclusion  

Car-following models are among the most important topics in the field of traffic simulation at the 

micro level. All famous models that are used today include a set of parameters that require careful 

calibration. To solve this problem, this paper uses a combination of ANFIS and CART to propose a 

car-following model for the first time. The model predicts the desired output, i.e. acceleration 

changes, by allocating four parameters including speed of the front car, relative distance to the front 

car, relative speed between the front car and the follower car, and the reaction time. To demonstrate 

the validity of this model, two techniques were used: theory of errors and micro simulation. In the 

theory of errors, the output data of the models were compared with reality and it was found that the 

proposed model has a good accuracy in the car-following modeling, considering the instantaneous 

reaction time as an input parameter. In the micro simulation, it was shown that the results from the 

Figure 14. Simulation result of following vehicle’s speed

Figure 15. Simulation result of following vehicle’s trajectory
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and CART to propose a car-following model for the 
first time. The model predicts the desired output, i.e. 
acceleration changes, by allocating four parameters in-
cluding speed of the front car, relative distance to the 
front car, relative speed between the front car and the 
follower car, and the reaction time. To demonstrate the 
validity of this model, two techniques were used: theory 
of errors and micro simulation. In the theory of errors, 
the output data of the models were compared with real-
ity and it was found that the proposed model has a good 
accuracy in the car-following modeling, considering 
the instantaneous reaction time as an input parameter. 
In the micro simulation, it was shown that the results 
from the moving vehicles in the actual route follow the 
actual conditions of the car-following flow based on 
the understanding of the follower car's driver about the 
performance of the front car, including the car speed 
and distance with it in every 0.1 seconds. This model 
can also be used in driver support tools, maintaining the 
safe distance, guiding unmanned vehicles and other ap-
plications of intelligent transportation systems.
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