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Abstract 

This study is aimed at exploring the effect of some recognized and new candidate variables of horizontal curves 

on crash frequency in four-lane highways using zero-truncated crash data. The present study has considered the 

related variables for 45 curves of four-lane intercity highways during a three-year period (2018-2020). The 

standard Poisson distribution is a benchmark for modeling Equi-dispersion count data and could not express 

Under-dispersion zero-truncated data. The modeling was performed using Poisson, Negative Binomial, Zero-

Truncated Poisson, Zero-Truncated Negative Binomial, and Conway-Maxwell Poisson (COM-Poisson) 

regression. The results revealed that the COM-Poisson regression distribution could effectively fit the model 

Under-dispersion zero-truncated Crashes data. According to the results, using the consistency and self-explaining 

variables as a useful approach for the estimation of crash frequency in four-lane highway horizontal curves was 

evaluated. 
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1. Introduction 

Traffic safety has been a growing concern for 

road safety professionals around the world. 

Road traffic fatalities and injuries are a major 

cause of death and disability, with a 

disproportionate number occurring in Iran as in 

other developing countries. 

The accident health risk index, i.e., the number 

of deaths per 100,000 inhabitants, is 20.5 in Iran 

which is higher than that of middle-income 

countries with an average of 18 [WHO, 2018]. 

A traffic crash is caused by three general 

factors: humans, vehicles, and roads. Most 

traffic crashes are related to human errors [Treat 

et al. 1997; NHTSA, 2016]. The condition of 

road elements plays an important role in road 

safety. Crash analysis has shown that the crash 

rate in horizontal curves is about 2 to 5 times 

that of the tangent sections on two-lane rural 

roads [Lamm et al. 1999]. The safety status of 

curves on rural highways in developing 

countries is more important due to the existing 

inconsistency of the conditions of many roads 

regarding geometric design standards, 

including radius, superelevation, and sight 

distance.  

Road design can be confusing and inconsistent 

with road users’ expectations. Generally, the 

road design is considered inconsistent on a road 

alignment in which drivers may face high-speed 

changes and unexpected events and driver’s 

expectations are not met [Cafiso et al. 2007]. 

A poorly consistent road causes drivers’ 

confusion. In addition, too many changes along 

different road sections can increase the 

likelihood of crashes for different drivers. So 

far, the concept of consistent roads has focused 

on geometric design aspects such as the radius 

of curves and the prevention of snap speed 

reduction on roads. 

On the other hand, the self-explaining road 

presents a more comprehensive definition of the 

provision of the information required by 

drivers. 

The objective of this paper is to present a 

consistent and self-explaining based model for 

crashes in the horizontal curves on four-lane 

intercity highways in Iran. The main 

contribution or novelty of this study is 

identifying and applying a combination of 

different variables of design consistency an 

self-explaining in modeling of intercity curves 

crash prediction on four-lane intercity 

highways. Another contribution is to find a 

suitable discrete probability distribution for 

zero-truncated under-dispersion data. 

Consistency variables used in this study include 

performance speed, vehicle stability, lane 

alignment, and driver workload. Variables 

related to 6-second logic, the field of view logic, 

and driver perception logic were considered as 

the self-explaining criteria. The data from 45 

curves on four-lane intercity highways from 15 

Iranian provinces were collected and used in 

modeling. 

The most popular distribution for modeling 

count data is the Poisson distribution, which 

assumes equi-dispersion of the variables. Since 

the observed count in this study exhibits under-

dispersion, Poisson models become less ideal 

for modeling. Poisson, Negative Binomial, 

Zero-Truncated Poisson, Zero-Truncated 

Negative Binomial, and Conway-Maxwell 

Poisson (COM-Poisson) regressions were used 

as an alternative for the regression models.  

The remainder of this paper is organized as 

follows: In Section 2, a review of the 

background of the consistency and self-

explaining measurement indexes is presented. 

Section 3 describes the research method and 

data used in the research. Section 4 presents 

model Development. Finally, Section 5 

provides a conclusion and recommendations. 

2. Literature Review 

The following presents a literature review of the 

potential measures and prediction models. 

The term “consistent alignment” is referred to 

the degree to which a highway complies with 

the drivers’ expectations to avoid crash-leading 
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maneuvers. The importance of a consistent 

alignment is reflected by its association with 

safety. Research on design consistency has 

mainly focused on presenting quantities 

measures and developing some models for its 

prediction.  

Design consistency is referred to a design in 

which the geometric components of a road 

segment are in line with its operational 

parameters perceived by the drivers. Previous 

studies have proposed some procedures to 

measure this consistency quantitatively. 

Overall, this alignment can be categorized into 

four main types Operating Speed, Alignment 

Indices, Vehicle Stability, and Driver Workload 

[Hassan et al. 2001]. Studies on the consistency 

of the road geometric design have been related 

to two-lane roads so far. To the best of our 

knowledge, no study has assessed the 

consistency of expressways or four-lane 

highways. The reason for this research gap is 

the high standards of expressways construction 

and the relative certainty of achieving 

consistent conditions on such roads. In Iran, 

most four-lane highways have been constructed 

by widening the previous two-lane roads. As a 

result, the main geometric safety features of the 

four-lane road are similar to the two-lane road. 

However, speed values on such roads are 

considered the same as the speed limit of 

expressways (i.e., 110 km/h). In this way, 

drivers sometimes should lower their speed as 

low as 60 km/h or less in the curve sites that are 

unsafe action. In the following, the alignment 

criteria for the consistency assessment of a 

geometric design are explained.  

Operating speed is the most widely used factor 

for design consistency assessment. Typically, 

this criterion is defined as the 85th percentile of 

driving speed. Many crashes occur due to 

improper speed adjustment by drivers in areas 

required for speed adjustments, such as curves 

and intersections [Al-Masaeed et al. 1994]. 

In this respect, sudden unexpected changes in 

roadway alignment may demand snap changes 

in vehicle operating speed [Lamm et al. 1999]. 

Changes in vehicle operating speeds can 

effectively reflect the presence of 

inconsistencies in the geometric design of road 

features [Nicholson, 1998]. The speed 

reduction on a horizontal curve with a preceding 

curve or tangent may be accompanied by crash 

frequency [Fitzpatrick et al. 2000a]. Among 

various methods available for consistency 

estimation, the most widely used techniques for 

this purpose are based on the operating speed of 

vehicles, suggesting the meaningful 

relationship of this criterion with crashes 

[Luque and Castro, 2018]. Operating speed is 

defined as the 85th percentile speed of a vehicle 

on roads under free-flow conditions.  

Operating speed consistency describes the 

difference in V85 between two successive 

geometric elements. There are two ways of 

collecting speed data: 1) using radar, 

surveillance cameras, etc., and 2) using 

mathematical equations. Choosing how to 

collect data depends on the project size and the 

feasibility of collecting data. Researchers from 

different countries have proposed several 

equations for determining the predicted 

operating speed based on alignment parameters. 

To the best of our knowledge, most studies 

employ these models for speed prediction.  

Alignment Indices are the second used factor 

for design consistency assessment that road 

safety designers should consider [Lamm et al. 

1999]. In a consistent alignment, drivers with 

enough confidence can drive safely at their 

desired speed throughout the entire alignment. 

Related indices reflect the general features of an 

alignment in a road segment. 

Some advantages of using these indices are as 

follows [Anderson et al. 1999]: First, designers 

and road safety experts can easily use and 

understand these indices. Second, they can be 

used to offer a mechanism for the numerical 

comparison of successive geometric elements 

from a system-wide perspective. Third, they can 

quantify the interaction between the vertical and 

horizontal alignments in a roadway. In a 

thorough analysis of road accidents in 
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Washington State, CRR (i.e., the radius of an 

individual horizontal curve to the average 

radius of the entire section) was reported as the 

most determining factor in collision prediction. 

Moreover, unlike other alignment criteria that 

are only usable in a relatively long road section, 

CRR can be applied to assess an individual 

curve [Fitzpatrick et al., 2000b]. Research has 

also shown that road safety is sensitive to CRR. 

According to Anderson and his colleague's 

study, CRR can be considered an effective 

criterion to measure design consistency 

[Anderson et al. 1999]. The reason for the 

efficiency of this criterion is that when a 

horizontal curve’s radius deviates significantly 

from the average radius along the road segment, 

the curve might create inconsistency and violate 

driver expectancy [Anderson et al. 1999]. Some 

potential alignment indices recommended by 

researchers are the average rate of vertical 

curvature (AVC) by Fitzpatrick et al. [2000a], 

Curvature change rate (CCR) by Fitzpatrick et 

al. [2000b], the ratio of the radius of the curve 

to the mean radius (CRR) by Anderson et al. 

[1999], and the ratio of maximum radius of 

curvature to a minimum radius of curvature by 

Polus [1980].  

Vehicle stability is the third used factor for 

design consistency assessment. In this regard, 

surface friction is an important and critical 

characteristic of the pavement surface that 

provides the driver the ability to accelerate, 

decelerate and steer the vehicle. It can be 

reduced as a consequence of surface 

contamination (from water or pollution) and 

polished surface aggregate. Vehicle stability is 

an essential factor in measuring design 

consistency. Head-on collisions and rollovers of 

vehicles may be due to huge centripetal forces 

inserted into a vehicle that moves on a 

horizontal curve at insufficient friction. Lamm 

proposed using vehicle stability for design 

consistency and safety assessment [Lamm et al. 

1991]. Studies on vehicle stability analysis are 

mainly based on determining the safety margin 

for a vehicle traveling at the operating speed 

and the safety margin for the difference between 

side friction demand and side friction supply. 

Driver workload is the last used factor for 

design consistency assessment. The driving 

workload can be defined as demand tasks 

applied to a set of undifferentiated mental 

resources that has a significant effect on the 

driver’s performance. With increasing the 

complexity of the road’s geometric features, the 

time needed to perform a given driving 

maneuver increases, as well, resulting in a 

higher driver workload. In the case of low 

workload levels, performance will decline due 

to information missing caused by inattention or 

making drivers bored or tired. Hence, designers 

should avoid highway segments with 

excessively very or low high driver workloads. 

This workload measures the effort expected by 

a human operator when performing a task, 

irrespective of how the task is performed 

[Senders,1970]. Road safety should be 

improved by avoiding geometric features 

inducing very high or low driver workloads. 

A visual demand (VD), also known as a direct 

measure, is the visual information to drive 

safely in a given roadway path. Both subjective 

and physiological criteria have been introduced 

for driver workload measurement [Krammes et 

al. 1995].  

The basic notion of a self-explaining road is a 

“traffic environment which elicits safe behavior 

simply by its design” which is considered a new 

design concept in the roads and their 

environment. This concept recommends 

designing roadways in such a way that users can 

quickly and easily know the expected safe 

behavior and adapt their expectations for that 

type of road [Theeuwes and Godthelp, 1995].  

A driving error is typically the consequence of 

poor driving performance where the driver 

exposes the car to an unsafe position. The 

drivers may correct their mistakes by changing 

their driving mode (i.e., acceleration or 

braking). Hence, these errors may be corrected 

before drastic consequences such as crashes 

[PIARC, 2019]. Gestalt psychology can 
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describe several issues associated with the 

probability of a road accident event. Gestalt is 

expressed as the perception of certain contents 

provided from the landscape background. 

According to Gestalt, regarding immediate 

perception (i.e., olfactory, auditory, visual, 

taste, and verbal), the perceiver could detect an 

“image” that is variable in reality and decide 

based on it [Stadtler, 1998]. Gestalt laws were 

soon considered valuable pieces of information 

by road design experts. Consequently, several 

experts believe that providing many design 

conditions may lead to misjudgment of curves, 

paths, and slopes [PIARC, 2019]. Road 

environment features can form driving behavior 

on the road [Bargh and Ferguson, 2000]. For 

instance, drivers deliberately follow a route 

they are already familiar with to reach a new 

destination, regardless of its length. In a 

modeling study, participants could not 

recognize a change in an important road safety 

sign even after driving on the road 24 times 

[Martens and Fox, 2007].  More than 90% of the 

information needed by a driver to take correct 

decisions during driving is in visual forms 

[Hills, 1980; Sivak, 1996]. Research has also 

shown that visual impairments are among the 

major causes of traffic crashes [Charlton and 

Starkey, 2013]. Based on the human factors’ 

interaction with road design, there are three 

major principles to consider in the geometric 

design of roads [PIARC, 2016].  These three 

principles are explained in the following. 

The first principle is the on-time notification of 

upcoming events (4 to 6 seconds): It takes at 

least 4 to 6 seconds for a typical driver to adjust 

from one traffic situation to another or adjust to 

a new situation. In crashes at curves, the driver 

most often notices a change in the conditions 

ahead of the route too late. Therefore, there is 

not sufficient time for drivers to avoid crashes. 

Self-explaining and user-friendly design give 

the driver the required time (4-6 seconds). It 

takes to adapt, including the advance and 

warning sections, the encounter section (route 

prediction), the approach (decision) section, 

and the maneuver section [PIARC, 2019]. 

The second principle is the driver’s field of 

view: A safe field of view for road users should 

be provided. An adequate field of view supports 

and guides the motor vehicle driver and 

prevents him from deviating toward the edge of 

the traffic lane or even leaving the lane. 

Misleading eye-catching objects on the 

roadside that do not align with the axis of the 

road cause unconscious changes in the 

movement direction. Such objects lead to gross 

errors in orientation and controllability, such as 

disturbances in staying on the path. The status 

of the factors related to the density of the field 

of view, fixed elements’ state in the road 

environment, and depth of the field of view are 

factors effective in providing the required 

conditions of the field of view logic. The 

absence of boring uniformity of the driver on 

the road and its surroundings and the absence of 

cross-section with glare-leading far-distance 

vision before the curves are considered in the 

density assessment of the field of view. 

Elements’ condition in maintaining the optimal 

traffic lane is considered in fixed elements 

assessment in the lateral road environment. 

Depth of field of view also requires evaluating 

the degree of sharpness and the possibility of 

tracking objects and the absence of ambiguity in 

detecting distances and objects on the road and 

its environment [PIARC, 2019].  

The third principle is the logic of driver 

perception: The perceptual logic of road users 

must be considered in the road environment and 

along the route. Drivers drive along the road 

with their anticipation and orientation, which 

forms through their recent experiences and 

perceptions, based on the last 5-10 minutes of 

the driving experience. The driving behavior on 

the road is adjusted unconsciously. Central 

vision and side vision make the entire visual 

field. Unexpected deviations and the presence 

of unpredictable objects that are far from the 

driver’s pre-planned expectations disrupt the 

automatic sequence of actions. Also, they may 
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cause the driver to slip and increase the 

potential of a crash occurrence. The driver’s 

perceptual logic principle is evaluated based on 

the location of road alignment with the driver’s 

expectations, the lack of a sudden increase in 

the driver’s mental workload, and the absence 

of deficiencies in traffic control devices 

[PIARC, 2019]. According to recent studies, 

road self-explaining variables have not been 

used in crash prediction modeling due to the 

novelty of the self-explaining index. 

Furthermore, the lack of preliminary studies in 

this context has led to inattention to the role of 

self-explaining in road safety. 

Crash prediction models, known as Safety 

performance functions (SPFs), are statistical 

models predicting the probability of crashes on 

a certain section of roadway that can be used to 

investigate the effect of various variables on the 

crash indicator. Research on crash generation 

models has focused on non-human behavioral 

parameters such as road geometric design, road 

environment, and traffic flow factors. Many of 

the models proposed for road crash prediction 

employ generalized linear regression (GLM) 

with the Poisson distribution. These models are 

established based on variables of traffic volume 

and road geometry regarding the haphazard 

nature of crashes and their non-negative values 

[Anderson et al. 1999; Fitzpatrick et al. 2000b]. 

In practical problems, e.g., crash prediction, the 

dependent variable (response) is not normally 

distributed. Therefore, they cannot be modeled 

by linear models. There are three conditions for 

dispersion of count data: equi-dispersion, over-

dispersion, and under-dispersion. Equi-

dispersion is when the variance is equal to the 

mean of the crash counts. Over-dispersion is 

when the variance exceeds the mean of the 

crash counts. Finally, under-dispersion is a rare 

phenomenon in which the mean is greater than 

the variance of the crash counts on-road 

sections. For equi-dispersion, common Poisson 

distribution is suitable. However, over-and 

under-dispersion cases may lead to erroneous 

crash predictions and inaccurate inferences 

about the crash factors. The dependent 

variable(s) with over-dispersion or under-

dispersion can violate some of the modeling 

approaches’ basic count-data modeling 

assumptions. In the case of the dependent 

variable(s) with over-dispersion, researchers 

have recommended employing regression 

modeling with negative binomial (NB) 

distribution [Ng and Sayed, 2004; Cafiso et al. 

2010]. The dependent variable(s) with under-

dispersion is more probable when the sample 

mean value is very low. To this end, researchers 

have recommended employing regression 

modeling with Conway-Maxwell Poisson 

(COM) distribution [Shmueli et al. 2005]. To 

the best of our knowledge, no previous research 

has modeled crash data on intercity highway 

curves with zero-truncated under dispersion 

status. Numerous prediction and analysis 

models for intercity horizontal curve crashes 

have been proposed by various researchers. 

These models mainly include different types of 

GLM as 1) Poisson structure, 2) negative 

binomial, 3) log-normal regression, and 4) zero-

inflated negative binomial. As a general 

statistic, it can be said that about 70% of the 

surveyed studies have used the negative 

binomial method [Anderson   et al. 1999],[Al-

Sahili et al. 2019],[Bird and Hashim, 2006], 

[Cafiso et al. 2010], [Gooch   et al. 2016], 

[Hamilton  et al. 2019], [Khan  et al. 2012], 

[Liopis-Castelló et al. 2018], [Ng and  sayed, 

2004], [Persaud et al. 2000], 15% have used 

method poisson structure [De ona and 

Garach,2013], [Saffarzade et al. 2007] and 15% 

have used other methods [Schneider  et al.  

2009], [Schneider et al. 2010], [Dhahir and 

Hassan, 2017]. Among the methods examined, 

more than 65% of the researchers used a total 

number of crashes and some others used other 

parameters such as Injuries and fatalities 

crashes [Cafiso et al. 2010], some truck crashes 

[Schneider et al. 2009], vehicle crashes on 

motorcycles [Schneider et al. 2010] and 

rollover crashes [Hamilton et al. 2019]. 
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3. Research Method 

The following is a description of the 

methodology used in data collection, selected 

distributions for modeling, and criteria for 

evaluating the fitted models. 

3.1. Data Description 

The study site in this research is 45 curves with 

a history of fatal crashes on intercity four-lane 

highways in 15 Iranian provinces. It is of note 

that the selection of these curves and the type of 

their crashes were based on limitations in crash 

data and their accuracy. Fatal road crashes data 

collected to identify crash-prone areas have the 

highest accuracy and reliability in Iran. These 

data do not have a value of zero. On the other 

hand, the mean is greater than the variance of 

crash counts on curve sections. Therefore, the 

crash data used in this research are under-

dispersion zero-truncated. These fatal crash 

data of the mentioned curves have been 

collected in cooperation with the National Road 

Police and the General Directorate of Road 

Maintenance and Transportation for three years 

ending in 2020. The required data for the 

specification of chosen curves were collected 

from the databases available in the Road 

Maintenance and Transport Organization 

(RMTO) of the Islamic Republic of Iran. 

The data set includes traffic volume, geometric 

design, skid resistance, photographs, and video 

files taken for chosen curves of four-lane 

intercity highways. It is noteworthy that the 

conventional methods for collecting speed data 

using radar, surveillance cameras, etc., were not 

possible. Hence, in this study, the operating 

speed was estimated using an equation 

calibrated in previous studies used in the RMTO 

for the road rating project. For each curve, three 

indices related to the three corresponding 

principles of self-explaining were evaluated.  

Then, they were scored by three safety auditors 

using images and video information based on 

the PIARC recommended specifications for 

determining the curves’ self-explaining scores 

[PIARC, 2019].  

Also, Table 1 summarizes the characteristics of 

homogeneous road curves’ variables including 

exposure, geometric and operating, 

consistency, and self-explaining characteristics 

considered for model development in the 

present study.
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Table 1. Summary of characteristics of homogeneous curves variables considered for model development 

Variable Abbreviation Description Mean Min. Max. 
Standard 

deviation 

E
x

p
o

su
re

 

ADT [veh/day] Average daily traffic 9337 5142 14546 2088.96 

HV[%] Percentage of heavy vehicles in traffic 27.51 14.58 71 16.01 

G
eo

m
et

ri
c 

an
d

 

O
p

er
at

io
n

al
 

Df  [deg ] Deflection angle 25.5 6.52 51.59 11.87 

LC [m] Length  of  curve 356.7 125 810 151.81 

TL[m] Length of tangent preceding the curve 890.2 10 5000 1507.66 

R [m] Curve radius 880.8 216 1648 358.45 

TL/R [m/m] 
The ratio of the length of tangent to 

curve radius 
0.992 0.0006 5.81 1.456 

CCR [gon/km] The curve change rate  of the curve 94.81 32.64 220.84 43.19 

Sh [m] Total curve shoulders  width 2.28 1 4.4 1.01 

G [%]] Longitudinal  curve  grade 2.741 0 9.91 2.76 

IRI [m/km] International  roughness  index 2.604 1.7 4.6 0.563 

C
o

n
si

st
en

cy
 

 

The absolute value of the operating 

speed difference in the tangent-to-

curve transition 

5.293 0 17.24 5.08 

Δ CCR 

[gon/km] 

Difference between the curve change 

rate  and the average change rate of 

curves  in 3 km before the curve 

-88.88 -301 104.42 117.41 

CRR [m/m] 

Modified change radius rate: the ratio 

of the curve radius to the  average 

radius of three previous curves 

1.352 0.72 2.356 0.426 

 

[-] 

The difference between existing and 

demanded side friction (at the 85th-

percentile speed) 

-0.05 -0.145 0.125 0.059 

Δe [%] 

The difference between existing and 

demanded superelevation (at the 85th-

percentile speed) 

-1.401 -6.52 12.86 3.207 

VD.lu Visual demand for unfamiliar driver 0.492 0.41 0.65 0.064 

S
el

f-
ex

p
la

in
in

g
 

SE-6sr [num] 
6-second rule  score of  curves  self-

explaining  condition 
23.4 14.77 27.28 2.762 

SE-fv [num] 
Field of view score  of  curves  self-

explaining  condition 
31.55 17.05 44.32 7.28 

SE-lr [num] 
Logic rule score of  curves  self-

explaining  condition 
18.51 11.36 27.74 3.56 

SEsum [num] 
A total self-explaining score of curves  

condition 
73.57 50 94.32 10.94 

C
ra

sh
 

CR-fatal [num] 
Fatal  crashes in curve area (per 3 

years) 
2.644 1 5 1.264 

3.2. Selected Distributions for Modeling  

In this study, curve crash variables were 

estimated using generalized linear modeling 

(GLM). The GLM is superior to the 

conventional linear regression because the 

former can overcome the latter’s limitations 

[Ng and Sayed, 2004]. In the GLM, Poisson or 

negative binomial is considered the error 

structure that best fits the crash occurrence. 
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Negative binomial and Poisson models have 

been widely used in numerous studies 

concerning curve crash modeling. In the case 

the values of the response variable are under-

dispersion, it is not reasonable to apply 

regression modeling with NB distribution.  

However, since the data used for this purpose is 

non-zero, the following alternative models were 

used for this purpose: Zero-truncated negative 

binomial and zero-truncated Poisson. Also, the 

simulations were performed using the Conway-

Maxwell Poisson model regarding the under-

dispersed nature of the applied data. Therefore, 

according to the collected data, which are 

numerical and non-zero, five models (i.e., 

Poisson, zero-truncated Poisson, negative 

binomial, zero-truncated negative binomial, and 

Conway-Maxwell Poisson) were chosen to 

meet the research requirements.  

The best model is selected among these models 

through statistical measures. The following is a 

brief description of these five models and their 

mathematical equations. 

3.2.1. Poisson Regression 

The Poisson distribution is based on the 

independent occurrence of events and discrete 

probabilities.  

This regression is employed in several 

applications using rare event measurements 

[Miller and Freund, 1977]. 

The probability function of this regression is as 

follows: 

f(𝑦𝑖,µ) = 
𝑒−𝜇µ𝑦𝑖

𝑦𝑖ǃ
     𝑦𝑖  = 0, 1, 2, 3,.. (1) 

Where  𝑦𝑖  is a counting variable (i.e., the 

number of occurrences) and  µ > 0  is the 

Poisson parameter. 

Independent variables are imported to the 

model using the function g(µ) = log(µ). Since 

the mean and the variance are equal in this 

distribution, they are formulated as E( 𝑦𝑖 ) = 

Var(𝑦𝑖) = µ. The Poisson regression model is 

expressed by Eq. (2): 

g(µ)= log(µ)= 𝑥.β + 

Ԑ 
(2) 

Where  𝑥  indicates the independent variables’ 

observation vector and β is a regression 

coefficient. As E(𝑦𝑖) = µ, the Poisson regression 

model is expressed as follows: 

y= µ=𝑒𝑥𝛽 (3) 

3.2.2. Negative Binomial Regression 

The negative binomial distribution is 

appropriate for modeling count non-negative 

values with over-dispersion.  

Eq. (4) expresses the probability mass function 

(PMF) of this distribution [Geene, 2008; 

Cummings, 2009] mathematically: 

P(y)= 
𝛤(𝑦+𝜃)

𝑦!𝛤(𝜃)
 (

𝜇

𝜇+𝜃
)

𝑦
(

𝜃

𝜇+𝜃
)

𝜃
 (4) 

Where 𝛤(. ) is the Gamma function,  𝜃  is the 

shape parameter, y= 0, 1, 2, …, and  µ is the 

mean. Also, E(y) = µ and Var(y) = µ(1+µθ-1) 

show this distribution’s mean and variance, 

respectively. 

3.2.3. Zero -Truncated Poisson 

Regression 

This distribution, also known as Positive 

Poisson Distribution is employed only for non-

zero integers [Johnson et al. 2005; Wimmer and 

Altmann, 1999].  

The probability mass function of this 

distribution is expressed as Eq. (5): 

p(yi | yi>0)= 
𝑝(𝑦𝑖)

1−𝑝(𝑦𝑖=0)
=  

𝑒−𝜇𝑖𝜇
𝑖

𝑦𝑖

𝑦𝑖 !(1−𝑒−𝜇𝑖)
 = 

𝜇
𝑖

𝑦𝑖

𝑦𝑖 !(𝑒−𝜇𝑖  −1)
  ,  yi= 1, 2, 3, … 

(5) 

Eq. (6) and Eq. (7) represent the mean and 

variance of this distribution, respectively: 

E(yi)= 
𝜇𝑖 𝑒𝜇𝑖

𝑒𝜇𝑖  −1
 (6) 

Var(yi)= 
𝜇𝑖𝑒𝜇𝑖

𝑒𝜇𝑖  −1
 (1- 

𝜇𝑖

𝑒𝜇𝑖  −1
) (7) 

Where g (µ𝑖) = log (µ𝑖). The regression function 

of this distribution is similar to that formulated 

in Eq. (2). 

3.2.4. Zero- Truncated Negative 

Binomial 

As a conditional probabilistic distribution for 

non-zero values, the PMF of the zero negative 

binomial distribution is expressed by Eq. (8) 

[Cohen, 1960]: 
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P(y/ 𝜇ˎ𝛼ˎ𝑦 >  0 ) = 

ɼ(𝑦+𝛼)

𝑦!ɼ(𝛼)
 (

𝛼𝜇

1+𝛼𝜇
)

2
(

1

1+𝛼𝜇
)

𝛼−1
×

(
1

1−(1+αμ)−α−1) 

(8) 

E(y) = 
𝜇

1−(1+𝜇/𝛼)−(1/𝛼)−1 (9) 

Where the response variable (y) follows a 

Poisson distribution with positive numbers, and 

μ and α show the mean response for all 

observations and dispersion parameters, 

respectively. 

3.2.5. Conway-Maxwell Poisson 

The COM-Poisson distribution is a 

generalization of the Poisson distribution. 

Statisticians have re-formulated this 

distribution to model count data, which are 

over-dispersed or under-dispersed [Conway and 

Maxwell, 1962; Shmueli et al. 2005].  

This distribution is flexible enough to represent 

the distribution of a wide range of count data 

[Sellers and Shmueli.,2010]. The distribution 

function of this probability is mathematically 

presented as Eq. (10):  

P(y, 𝜐) = 
  𝜆𝑦

(𝑦!)υ 𝑧(𝜆‚υ)
 (10) 

(𝜆, 𝜐)=∑
λ𝑛

(𝑛!)υ
∞
𝑛=0  (11) 

Where y is a discrete count and 𝜆 is a centering 

parameter almost equal to the mean of the 

observations in many cases. Also, 𝜐 ≥ 0 is a 

normalizing constant representing the shape 

parameter of the COM-Poisson distribution. In 

Eqs. (10) and (11), 𝜐 is the dispersion parameter 

in a way that 𝜐 > 1 and 𝜐 < 1 denotes under-

dispersion and over-dispersion, respectively. 

The COM-Poisson distribution consists of the 

following three popular distributions: 

Geometric distribution (𝜐 = 0, 𝜆 < 1), Poisson (𝜐 

= 1), and Bernoulli distribution (𝜐 → ∞ 𝑤𝑖𝑡ℎ  
λ

1+λ 
) (Shmueli et al., 2005). 

Eq. (12) shows a COM-Poisson regression 

model based on the link function by taking a 

GLM approach (Sellers and Shmueli, 2010): 

(𝑌) = log 𝜆 = 𝑋 ′𝛽 = β0 + ∑ βj𝑋𝑗
𝑝
𝑗=1  (12) 

Eq. (12), mathematically expresses the 

relationship between 𝑋′𝛽 and (𝑌) [Sellers and 

Shmueli, 2013]. 

3.3. Goodness of Fit Tests 

3.3.1. Pearson's Chi-Squared  

Pearson’s Chi-squared (χ2) is a statistical 

measure to assess the proximity degree of actual 

values and prediction values from the proposed 

models. 

This measure is determined using the GOF test. 

This statistic is mathematically related to the n-

v-1 degree of freedom (DOF) expressed by Eq. 

(13) [Taylor,1982].  

x2= ∑ (
𝑦𝑖−𝐸(𝑦𝑖)

√𝑉𝑎𝑟(𝑦𝑖)
)

2
𝑛
𝑖=1  (13) 

Where v and n show the number of parameters 

and observations, respectively. 

Next, the X2
0.05/X

2 index is calculated as the 

relative critical point of the Chi-square 

distribution with a significant level of 0.05 on 

the Chi-square distribution of the fitted model. 

If the expression output is in the range of 0.8 to 

1.2, the face and denominator of the fraction are 

equal or close to each other. 

3.3.2. Akaike Information Criterion 

(AIC) 

AIC is one of the well-known criteria for 

assessing the models’ performance based on 

several likelihood measures. This criterion is a 

measure of the GOF of an estimated statistical 

model [Akaike, 1974]. The mathematical 

formulation of AIC is expressed by Eq. (14): 

AIC = −2 log L+ 2p (14) 

Where L shows the maximum likelihood 

function for the model, and p denotes the 

number of parameters the statistical model has. 

A model with a lower AIC has a high best 

performance and vice versa. 

3.3.3. 𝑹𝟐(Cox and Snell) 

𝑅2
(Cox and Snell)  is a criterion to adjust the 

statistic scale for covering the full range from 0 

to 1. This criterion is formulated by Eq. (15), as 

follows: 

R2
C&S = 1 – (L0 / LM)2/n (15) 

https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
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Where 𝐿0  and 𝐿𝑀   are the likelihood function 

for a model with no predictors and the model to 

be estimated, respectively, and n indicates the 

sample size [Cox and Snell, 1989]. 

3.3.4. Mean Prediction Bias (MPB) 

MPB can be used as a criterion to measure the 

bias direction and magnitude of the average 

model [Oh and Lyon, 2003]. 

In a positive MPB, the model over-predicts car 

accidents. On the other hand, a model with a 

negative MPB underestimates the crashes. MPB 

is expressed using Eq. (16): 

MPB =
1

𝑛
 ∑ (𝑦𝑖̂ −𝑛

𝑖=1  

𝑦𝑖) 
(16) 

Where, 𝑦𝑖  and 𝑦𝑖̂  are observed and predicted 

crashes, respectively, and n is the sample size. 

3.3.5. Mean Absolute Deviance (MAD) 

MAD is a criterion to estimate the average 

predictive error of the model [Oh and Lyon, 

2003].  

This criterion is calculated using Eq. (17): 

MAD =
1

𝑛
 ∑ 𝑦𝑖̂ − 𝑦𝑖  𝑛

𝑖=1    (17) 

3.3.6. Mean Squared Predictive Error 

(MSPE) 

MSPE is a criterion to evaluate the error of an 

external data set or the validation error [Oh and 

Lyon, 2003]. MSPE is calculated using Eq. 

(18), as follows: 

MSPE =
1

𝑛
∑ (𝑦𝑖̂ − 𝑦𝑖)2𝑛

𝑖=1  (18) 

4. Model Development 

The GLM was used to estimate the parameters 

of the crash prediction models. The GLM has 

the advantage over random linear regression by 

overcoming the limitations associated with 

random, discrete, and non-negative data [Ng 

and Sayed, 2004]. For the GLM approach, the 

error structure which best fits the crash 

occurrence is usually assumed Poisson or 

negative binomial. Every regression technique 

selection should always be based on analyzing 

the data under study. The model development 

phase included variable selection, fitting 

models, and comparison of the models to 

determine the best model.  

The data in this study included zero-truncated 

count data with under-dispersion. The best 

model and the most significant variables were 

identified by fitting five types of regression 

models called Poisson, negative binomial (NB), 

Zero-truncated Poisson(ZT-Poisson), Zero-

truncated negative binomial(ZT-NB), and 

Conway-Maxwell Poisson. There is limited 

software for estimating Poisson models, 

including zero-truncated and Conway-Maxwell 

Poisson. The statistical analyses and modeling 

were performed in the statistical R (Ver.4.1.2) 

software using its functional package. 

4.1. Variable Selection 

Selecting the Candidate variables among the 

potential variables, especially consistency and 

self-explaining variables, is an important stage 

in modeling. The decision for keeping a 

variable in the model was based on all three 

following criteria [Swalha and Sayed, 2006]: 

(1) The logic (i.e., +/-) of the estimated 

parameter should be associated with crashes, 

(2) The P-value for the t (z for n> 30 sample 

data) statistic for each parameter should be 

significant at the 95% confidence level, and (3) 

The added variable should have a minimal 

correlation (i.e., < 0.3) with any other 

independent variables in the same model. The 

most common correlation measure for data with 

normal distribution is Pearson Correlation. For 

abnormal distribution data, the Spearman 

correlation is a common measure. Multi-

collinearity would greatly increase sampling 

variations in coefficients. Some variables (e.g., 

CRR, CCR, VDlu, and ΔV85) are functions of 

curve radius(R).  

Also, some self-explaining measures are related 

together and have a strong correlation. In this  

study, the normality of variables was 

investigated using the Shapiro-Wilk test. The 

test results showed that the variables ADT, 

CRR, Df, R, SE.fv, and SE.sum have a normal 

distribution, and the normality assumption for 

other variables was not obtained. The Pearson  

correlation coefficient was used to examine the 

correlation between variables for the case that 
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both have a normal distribution, and the 

Spearman correlation coefficient was used for 

other cases. A correlation matrix was developed   

to check the correlation between variables 

(Table 2). Highly correlated variables are those 

with a correlation value of 0.7 or higher 

[Sawalha and Sayed, 2006]. Variable pairs that 

are strongly correlated (i.e., Cp or Ep higher 

than ±  0.7) were considered for discarding. 

Specifically, there were high correlations 

between R and Df, TL and TL/R, LC and VD.lu, 

R and Δf, and SE.lr and SE.sum. After the 

preliminary screening of alternative consistency 

and self-explaining measures based on 

Correlation analysis and logical considerations, 

the following twelve main variables were 

selected for potential inclusion in the final 

model: ADT, HV, SH, G, Δ𝑉85, Δe, CRR, IRI, 

SE.6sr, SE.fv, and SE.lr (or only SE.sum 

instead of the last three variables). 

4.2. Models Fitting 

The study is based on using the forward 

stepwise procedure by considering both AIC 

and p-value measures (drop a covariate if it is 

not statistically significant) such that the 

candidate variable is being added to the model 

one at a time. 

In the forward stepwise procedure, the leading 

exposure variable is recommended as the first 

variable to be added because of its dominating 

prediction effect [Swalha and Sayed, 2006]. 

Therefore, the model included exposure 

variables and a set of variables followed by 

step-by-step nominating the leading variables 

which are consequently ADT and the 

percentage of heavy vehicles in traffic (HV). 

Two-tailed estimated parameter coefficients 

with significant levels of (<10%) would suggest 

remaining the corresponding variables in the 

modeling based on what is additionally 

discussed in section 4.1. The result of the 

processing of these models outlined by using 

the well-known statistical software of "R" have 

been tabulated briefly in Tables 3, 4, 5, 6, and 7 

for curves crashes. 
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Table 2. Correlation coefficients matrix for potential variables  

  CR.fatal ADT HV Df R LC TL SH G ΔV85 Δf Δe TL/R CRR ΔCCR CCR IRI SE.6sr S.fv SE.lr Se.sum VD.lu 

CR.fatal 1 0.39 0.28 -0.02 0.05 0.17 -0.16 0.02 -0.23 0.36 0.03 -0.46 -0.11 -0.41 -0.08 -0.07 0.12 -0.25 -0.48 -0.15 -0.44 -0.17 

ADT 0.39 1 -0.01 0.16 -0.03 0.1 0.06 0.05 -0.21 0.12 0.12 -0.16 0.08 -0.32 -0.11 0.18 0.14 -0.24 -0.16 0.02 -0.18 -0.1 

HV 0.28 -0.01 1 -0.21 0.2 0.2 0.18 0.11 -0.17 0.25 -0.08 -0.3 0.16 -0.2 -0.09 -0.11 -0.13 0.32 -0.03 0.21 0.14 -0.18 

Df -0.02 0.16 -0.21 1 -0.69 0.22 -0.04 -0.26 -0.03 0.07 0.65 0.1 0.12 -0.11 -0.22 0.5 -0.09 -0.21 -0.04 0.14 -0.01 -0.23 

R 0.05 -0.03 0.2 -0.69 1 -0.08 0.01 0.3 0.22 -0.14 -0.71 -0.14 -0.23 0.03 0.37 -0.77 -0.05 0.25 0.27 0.08 0.27 0.09 

LC 0.17 0.1 0.2 0.22 -0.08 1 0.26 0.03 -0.24 -0.02 0.05 -0.25 0.26 -0.07 -0.13 0 0.1 -0.13 -0.21 -0.14 -0.19 -0.99 

TL -0.16 0.06 0.18 -0.04 0.01 0.26 1 0.05 0.05 0.04 -0.01 -0.1 0.95 -0.02 0.08 -0.06 -0.16 0.01 -0.09 0.01 -0.03 -0.24 

Sh 0.02 0.05 0.11 -0.26 0.3 0.03 0.05 1 -0.1 -0.09 -0.41 0 0 0.09 0.09 -0.28 -0.07 0.1 0.2 0 0.12 -0.05 

G -0.23 -0.21 -0.17 -0.03 0.22 -0.24 0.05 -0.1 1 -0.24 -0.11 0.11 -0.04 -0.01 0.3 -0.31 -0.16 -0.03 -0.02 0 0.02 0.25 

ΔV85 0.36 0.12 0.25 0.07 -0.14 -0.02 0.04 -0.09 -0.24 1 0 -0.22 0.15 -0.03 -0.06 0.16 -0.03 -0.16 -0.31 -0.08 -0.27 0.02 

Δf 0.03 0.12 -0.08 0.65 -0.71 0.05 -0.01 -0.41 -0.11 0.01 1 0.08 0.15 0.02 -0.42 0.61 0.1 -0.14 -0.19 0.11 -0.08 -0.06 

Δe -0.46 -0.16 -0.3 0.1 -0.14 -0.25 -0.1 0 0.11 -0.22 0.08 1 -0.13 0.18 0.22 0.1 -0.03 -0.15 0.18 -0.07 0.06 0.23 

TL/R -0.11 0.08 0.16 0.12 -0.23 0.26 0.95 0.01 -0.04 0.15 0.15 -0.13 1 -0.02 -0.03 0.11 -0.17 -0.06 -0.2 0.01 -0.12 -0.25 

CRR -0.41 -0.32 -0.2 -0.11 0.03 -0.07 -0.02 0.09 -0.01 -0.03 0.02 0.18 -0.02 1 -0.03 0.03 0.22 0.15 0.16 0 0.15 0.06 

ΔCCR -0.08 -0.11 -0.09 -0.22 0.37 -0.13 0.08 0.09 0.3 -0.06 -0.42 0.22 -0.03 -0.03 1 -0.47 -0.22 0.09 -0.09 -0.03 -0.04 0.12 

CCR -0.07 0.18 -0.11 0.5 -0.77 0 -0.06 -0.28 -0.31 0.16 0.61 0.1 0.11 0.03 -0.47 1 0.14 -0.16 -0.08 0.06 -0.09 -0.01 

IRI 0.12 0.14 -0.13 -0.09 -0.05 0.1 -0.16 -0.07 -0.16 -0.03 0.1 -0.03 -0.17 0.22 -0.22 0.14 1 0.06 0.06 -0.3 -0.08 -0.09 

SE.6sr -0.25 -0.24 0.32 -0.21 0.25 -0.13 0.01 0.1 -0.03 -0.16 -0.14 -0.15 -0.06 0.15 0.09 -0.16 0.06 1 0.43 0.52 0.69 0.15 

S.fv -0.48 -0.16 -0.03 -0.04 0.27 -0.21 -0.09 0.2 -0.02 -0.31 -0.19 0.18 -0.2 0.16 -0.09 -0.08 0.06 0.43 1 0.46 0.9 0.21 

SE.lr -0.15 0.02 0.21 0.14 0.08 -0.14 0.01 0 0 -0.08 0.11 -0.07 0.01 0 -0.03 0.06 -0.3 0.52 0.46 1 0.75 0.15 

Se.sum -0.44 -0.18 0.14 -0.01 0.27 -0.19 -0.03 0.12 0.02 -0.27 -0.08 0.06 -0.12 0.15 -0.04 -0.09 -0.08 0.69 0.9 0.75 1 0.19 

VD.lu -0.17 -0.1 -0.18 -0.23 0.09 -0.99 -0.24 -0.05 0.25 0.02 -0.06 0.23 -0.25 0.06 0.12 -0.01 -0.09 0.15 0.21 0.15 0.19 1 
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Table 3. Poisson model for curves fatality crashes 

Variable Estimate Standard Error Z-value P-value 

(Intercept) -1.97 4.43 -.44 0.66 

Lin (ADT) 0.41 0.44 0.90 0.37 

Lin(HV) 0.20 0.16 1.26 0.21 

CRR -0.26 0.24 -1.08 0.28 

∆e -0.06 0.04 -1.56 0.12 

SE.sum -0.01 0.009 -1.61 0.11 

𝑋0.05
2 /𝑋2 1.11    

AIC 148.27    

R2
C&S 0.310    

** Significant at the 0.05 level and * Significant at the 0.10 level  

Table 4. Negative binomial model for curves fatality crashes 

Variable Estimate Standard Error Z-value P-value 

(Intercept) -1.97 4.43 -.44 0.657 

Lin (ADT) 0.40 0.44 0.00 0.369 

Lin(HV) 0.20 0.16 1.26 0.209 

CRR -0.26 0.24 -1.08 0.280 

∆e -0.06 0.04 -1.56 0.119 

SE.sum -0.01 0.009 -1.61 0.107 

𝑋0.05
2 /𝑋2 1.11    

AIC 150.27    

R2
C&S 0.310    

** Significant at the 0.05 level and * Significant at the 0.10 level 

Table 5. Zero-truncated poisson model for curves fatality crashes 

Variable Estimate Standard Error Z-value P-value 

(Intercept) --2.36 5.36 -0.44 0.660 

Lin (ADT) 0.46 0.54 0.86 0.392 

Lin(HV) 0.27 0.20 1.37 0.170 

CRR -0.40 0.29 -1.37 0.169 

∆e -0.10 0.05 -2.004 0.045∗∗ 

SE.sum -0.01 0.01 -1.82 0.068∗ 

𝑋0.05
2 /𝑋2 0.68    

AIC 134.58    

R2
C&S 0.40    

** Significant at the 0.05 level and * Significant at the 0.10 level 

Table 6. Zero-truncated negative binomial model for curves fatality crashes 

Variable Estimate Standard Error Z-value P-value 

(Intercept) --2.36 5.36 -0.44 0.659 

Lin (ADT) 0.46 0.54 0.86 0.393 

Lin(HV) 0.27 0.20 1.37 0.169 

CRR -0.40 0.29 -1.37 0.170 

∆e -0.10 0.05 -2.003 0.045∗∗ 

SE.sum -0.01 0.01 -1.82 0.068∗ 

𝑋0.05
2 /𝑋2 0.68    

AIC 136.58    
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Variable Estimate Standard Error Z-value P-value 

R2
C&S 0.31    

** Significant at the 0.05 level and * Significant at the 0.10 level 

Table 7.COM-poisson model for curves fatality crashes 

Variable Estimate Standard Error Z-value P-value 

(Intercept) -1.92 2.30 -0.84 0.404 

Lin (ADT) 0.398 0.23 1.72 0.085∗ 

Lin(HV) 0.20 0.08 2.40 0.016∗∗ 

CRR -0.27 0.13 -2.13 0.033∗∗ 

∆e -0.06 0.02 -2.90 0.004∗∗ 

SE.sum -0.01 0.004 -3.13 0.002∗∗ 

𝑋0.05
2 /𝑋2 0.42    

AIC 121.41    

R2
C&S 0.677    

** Significant at the 0.05 level and * Significant at the 0.10 level 

It was found that Poisson, negative binomial, 

zero-truncated Poisson, and zero-truncated 

negative binomial distributions could not 

significantly fit the model for non-zero and 

under-dispersion data. In Poisson and negative 

binomial models, no exposure, consistency, and 

self-explaining variables appeared significantly 

in the model. In the zero-truncated Poisson 

model and the zero-truncated negative binomial 

model, only the variable Δe was significant in 

the fitted models, while even the exposure 

variables (i.e., ADT and HV) have not been 

proven to be significant. However, this study 

shows that the COM-Poisson regression model 

based on whole goodness of fit indicators can 

model under-dispersed zero-truncated crash data. 

Two consistency variables (i.e., CRR and Δe) and 

a self-explaining variable (i.e., SE.sum) in 

addition to the exposure variables (i.e., ADT and 

HV) appeared significantly in the model. A 

comparison of the fitted models based on 

goodness-of-fit indicators is presented in Table 

8. All parameters used in the selected model 

were explained earlier by the authors in Table 

1. Some of the variables were excluded from the 

modeling process for reasons such as lacking 

the estimated parameter’s logic (i.e., +/-) that 

could be declared that the variables may give 

inverse correlation, not because of the lack of a 

safety relationship, but because of limitations in 

the accuracy of the data obtained. This model 

provided good validation results. Model 

validity is concerned with the ability of crash 

models to explain the underlying phenomenon 

and focus on logical defensibility. In GLM 

models, it is not possible to use 𝑅2 index. The 

validity of this model was calculated and 

evaluated by the Cox-Snell generalization index 

(R2
C&S) to assess fitness. The large value of this 

index may suggest a better fit for the model. The 

value of this index for the Com-Poisson and 

Zero-truncated Poisson models is larger than 

the rest. Therefore, based on this index, the 

Com-Poisson model has a better fit, around 

0.677, which means a moderate association 

between predicted and observed crash 

frequencies Due to the absence of many 

components expressing the influenced factor in 

crashes (e.g., weather, vehicle, and driver 

conditions), the value of R2
C&S is considered 

acceptable. The model with negative MPB 

indicates an under-prediction of the dependent 

variable. A value close to 0 in this index 

indicates that the predicted values are very close 

to the actual value.
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Table 8. A comparison of the fitted models based on goodness-of-fit indicators 

** Significant at the 0.05 level      and       * Significant at the 0.10 level

The MAD index considers the difference 

between the predicted and actual values of the 

dependent variable as an absolute value. 

A value close to 0 of this index is desirable. 

Also, the MSPE value close to 0 indicates that 

the predicted values are very close to the actual 

value. Fatal crash frequency was positively 

correlated with the model’s exposure variables 

(ADT and HV) and was negatively correlated 

with consistency and self-explaining variables 

(Δe, CRR, and SE.sum). By increasing the 

difference between existing and demanded 

superelevation (Δe), crashes are expected to 

decrease. 

For the alignment index CRR, as the radius of a 

curve is higher than the average radius, the crash 

frequency is expected to decrease, and vice 

versa. Additionally, sharp curves would give a 

small average radius of curvature. These curves 

are expected to experience higher crashes than 

milder curves and vice versa. A large value for 

this index indicates a decrease in crashes 

occurring. 

For the self-explaining index SE.sum, as the 

total self-explaining score of the curves 

condition is increased, the crash frequency is 

expected to decrease. The calibrated model was 

analyzed for sensitivity to evaluate the effect of 

each mentioned factor on the overall 

performance.  

The results of sensitivity analysis show that the 

maximum sensitivity curves’ crashes are related 

to the ADT, with the HV percentage being in 

the second rank. A 10% reduction in ADT 

reduces curve crashes by 32%.  

Also, a 10% reduction in HV reduces crashes by 

7.4%. This result is because most heavy 

vehicles, especially trucks, are without any 

control and monitoring system for speed and 

maximum driving time. Regarding consistency 

characteristics, a 10% increase in Δe causes a 

3.7% decrease in on-road curves ‘crashes. 

Also, regarding self-explaining characteristics, 

a 10% increase in SEsum causes an 8.6% in 

reduction in on-road curves’ crashes. 

5. Conclusions and 

Recommendations 

This paper presented the effect of some 

recognized and new candidate variables of 

horizontal curves on crash frequency in four-

lane intercity highways for 45 curves with fatal 

crash history among the 15 provinces of Iran 

using zero-truncated crash data. 

Up to now, studies about road design 

consistency have focused only on rural two-lane 

highways since these highways have higher 

crash rates with considerable inconsistencies. 

The variables of road self-explaining have not 

been used in road safety modeling. Based on the 

obtained results, the main conclusions of this 

research are as follows: 

 - Crash data for this research included zero-

truncated and under-dispersion count data. 

Evaluation Criteria Type of Model 

 Poisson NB ZT-Poisson ZT-NB COM-Poisson 

Significant variables - - 
𝛥𝑒∗∗ ,  

𝑆𝐸․𝑠𝑢𝑚∗ 

𝛥𝑒∗∗ ,  

𝑆𝐸․𝑠𝑢𝑚∗ 

ADT∗, HV∗∗ , Δe∗∗ ,CRR∗∗ and 

SE․sum∗∗ 

𝑋2 / 𝑋0.05
2  1.11 1.11 0.68 0.68 0.42 

AIC 148.27 150.27 134.58 136.58 121.41 

R2
C&S 0.310 0.310 0.40 0.31 0.677 

MPB 
9.64 * 

10−12 
3.98*10−8 8.78*10−12 3.98*10−8 -0.0003 

MAD 0.643 0.642 0.663 0.642 0.462 

MSPE 0.656 0.660 0.690 0.660 0.560 
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Generalized linear regression modeling (GLM) 

approach was adopted for model development. 

The application of various generalized linear 

regression (i.e., Poisson, Negative binomial, 

Zero-truncated Poisson, Zero-truncated 

Negative binomial, and Conway-Maxwell 

Poisson techniques) was investigated. Overall, 

Conway-Maxwell Poisson regression was 

considerably more suitable for under-dispersion 

zero-truncated dependent data. 

- A relationship exists between geometric 

design consistency and curve self-explaining 

and safety on four-lane intercity highways. 

Validation of the model indicates that the fitted 

model experienced an acceptable level of 

goodness of fit and can be used in identifying 

the potential of four-lane highway curves’ 

crashes and prioritizing them. The value R2
C&S 

of this model was 0.677, which is relatively 

acceptable, especially considering the 

complicated nature of the crash occurrence. 

This result suggests that this model accounts for 

a large proportion of the variability in crash 

frequencies on road curves. 
 

- The ultimately developed model showed that 

Δe and CRR, as the main design consistency 

variables, have significant impacts on four-lane 

intercity highways safety for alignment indices 

and vehicle stability index, respectively. 

- It was found that four-lane intercity highways 

constructed by widening the previous two-lane 

roads in Iran need to be modified to ensure 

vehicle stability consistency in terms of 

adjusting the superelevation of curves.  

- The variable of the total self-explaining index 

(SE.sum) showed statistically significant 

modeling results. Overall, increasing road self-

explaining is an effective approach for 

improving curves’ safety on four-lane intercity 

highways. Therefore, a low-cost approach using 

self-explaining measures is recommended to 

improve traffic safety on four-lane intercity 

highway curves. 

- Highway designers should pay special 

attention to inconsistent and non-self-

explaining designs of four-lane intercity 

highways during the widening of two-lane 

highways to reduce crash frequencies. This 

model can be used in redesigning and 

improving existing four-lane intercity 

highways, designing new highways, and 

identifying accident hotspots. 

The final recommended model is still in the 

preliminary stage, and more work is needed to 

modify and develop for its consistency and self-

explanatory criteria.  

For future studies, it is suggested to explore and 

model a combination of curve self-explaining 

and consistency in modeling intercity two-lane 

highway crashes. More work and research 

should be done on highway sections with other 

geometric features such as vertical curves, 

inverse, and compound curves, access, and 

sight distances. 
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