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Abstract  
The Highway Safety Manual [HSM, 2010] recommends safety evaluations be performed before 
implementing any roadway treatment to predict the expected safety consequences.  Safety consequences can 
be measured using crash prediction models, Crash Modification Factor (CMFs), or both.  This paper 
develops a CMF to show the expected impact of red-light cameras (RLCs) on safety at signalized 
intersections. A CMF is a multiplicative factor used to compute the expected number of crashes after 
implementing a given countermeasure at a specific roadway site. RLCs are intended to improve driver’s 
alertness to avoid causing accidents. This paper analyzes accident data reported at thirteen signalized 
intersections in Virginia Beach in 2008 before the RLCs were installed and 2010 after the RLCs were 
installed. Safety performance functions (SPFs) and the empirical Bayes (EB) before-after methodologies are 
used to develop a CMF for this countermeasure. The result shows an overall CMF of 0.846, which is a 
15.4% safety improvement. This result is not absolute; however, but sets a starting point for further 
investigations and potential inclusion in the future editions of the HSM. 
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1. Introduction  
When faced with an amber light at a signalized 
intersection, approaching drivers are called upon to 
make a decision to either drive through or brake 
and come to a complete stop. If they are near the 
stop line, driving through can be necessary, but if 
they are far from the stop line, braking and 
stopping is the appropriate action. The option of 
what action to take becomes inconsistent when 
they are in the dilemma zone [Lum and Wong, 
2003]. As a result, there are approximately 10 red-
light running violations per hour at signalized 
intersections [Porter and England, 2000], a statistic 
significant enough to influence both safety and 
traffic flow at signalized intersections.  
     This investigation is a continuation of work by 
the corresponding author. It explores and measures 
the influence of RLCs as a countermeasure used by 
transportation practitioners and engineers to 
improve safety at signalized intersections. Placing 
RLCs at signalized intersections is a form of 
automated traffic enforcement intended to reduce 
the number of accidents due to red light running. 
This countermeasure has and continues to receive 
attention as an effective tool for improving safety 
[Martinez and Porter, 2006; and Hieatt, 2011]. In 
2008, more than 2.3 million intersection-related 
accidents were reported in the U.S., including 
7,770 fatalities and 733,000 with injuries. Of these, 
762 fatalities and 165,000 injuries were due to red-
light running [NHTSA, 2009]. Half of the fatalities 
were not the signal violators, but drivers and 
pedestrians hit by violators [IIHS, 2007].  
     The HSM [2010] recommends that safety 
evaluations to be performed before implementing 
any roadway treatment to predict the expected 
safety consequences.  Safety consequences can be 
measured using crash prediction models, CMFs, or 
both [HSM, 2010].  This paper develops a CMF to 
show the impact RLCs have on safety. A CMF is a 
multiplicative factor used to compute the expected 
number of crashes after implementing a given 
countermeasure at a specific roadway site [HSM 
2010]. A CMF of approximately 1.00 shows that 
the proposed or implemented treatment may have 
no effect on safety, while a CMF of more than 1.00 
shows that the treatment could result in safety 
degradation and a less than 1.00 CMF indicates an 
expected safety benefit [Gross, Persaud and Lyon, 
2010]. 
 

2. Literature Review 
Most studies have shown that the most effective 
tool to enforce red-light running violations is 
installing cameras. Such countermeasures reduce 
injury oriented crashes by approximately 25-30% 
[Retting and Kyrychenko, 2002] and overall 
violations by approximately 40% [Retting, Ulmer 
and Williams, 1999]. Hieatt [2011] showed that in 
2008 through 2009, the city of Virginia Beach 
installed RLCs at thirteen intersections to improve 
safety. In 2010, the total number of accidents per 
year at these locations had decreased by 24%. In 
addition to safety issues, studies such as Porter and 
England [2000], which analyzed actual traffic 
volume per light cycle data and their 
corresponding red-light running rates from two 
urban intersections, show that red-light running 
activities also exert pressure on traffic volumes at 
intersections that result in congestion. 
     Some studies, however have suggested that 
RLC installation at intersections may actually 
increase the number of accidents hence degrading 
safety. One such study was by Erke [2009] who 
conducted a meta-analysis on the effects of RLCs 
on accidents at signalized intersections. The study 
found that installing RLCs increased the overall 
number of accidents by approximately 15%. In 
particular, the study indicated that the rear-end 
accidents increased by approximately 40%, 
apparently because RLCs cause drivers to break 
abruptly and unexpectedly [Retting, Ferguson, and 
Hakkert, 2003]. Garber et al. [2005] also found the 
same trend while evaluating RLC enforcement 
programs in Virginia. Erke [2009] also found out 
that right angle accidents reduced by 
approximately 10%, the target crashes for RLC 
[Erke, 2009]. 
     Practitioners have taken several steps to reduce 
red-light running activities. Traditionally, police 
patrols have been used to enforce red-light 
running. However, this approach has significant 
setbacks because police departments have limited 
resources and violators learn to avoid police 
[Martinez and Porter, 2006]. Violators know that 
enforcement is irregular, and inconsistent. For 
example, Porter and Berry [2001] show that police 
are likely to stop only two out of ten violators. 
Another approach taken to reduce red-light running 
is configuring light cycles in accordance with the 
Institute of Transportation Engineers (ITE) 
protocol that is increasing the duration times for 
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amber and red intervals. This reduces injury 
associated crashes by approximately 12%, and 
pedestrian-bicycle crashes by approximately 37% 
[Retting, Chapline and Williams, 2002].  
     While estimating the effects of RLC 
enforcement on per capita fatal crash rates at 
signalized intersections, Hu et al. (2011) used 
Poisson regression distributions to compare the 
crash rates in 14 cities with RLCs to 48 cities 
without RLCs for the year 2008. The study 
determined that: (1) the average annual red-light 
running fatal crash rates reduced for both study 
groups, but the improvement was larger for the 
cities with RLC enforcement programs than for 
those cities without camera programs (35% vs. 
14%); (2) the average annual rate of all fatal 
crashes at signalized intersections decreased by 
14% for cities with camera programs and increased 
slightly (2%) for cities without cameras; and (3) 
the total fatal crash rates at signalized intersections 
during 2004–2008 for cities with camera programs 
were approximately 17% lower than what would 
have been expected without cameras. Thus, the 
study concluded that RLC enforcement programs 
significantly reduce both the rates of red light 
running crashes and the fatal crash rates at 
signalized intersections. 
     Previously, practitioners applied Crash 
Reduction Factors (CRFs) to estimate the safety 
benefits of certain countermeasure(s). However, 
the American Association of State Highway and 
Transportation Officials (AASHTO) in HSM 
[2010], advocate for the use of CMFs instead of 
CRFs.  CMFs for before and after conditions are 
usually found by applying observational before and 
after studies, specifically comparison group 
studies, and EB studies. In comparison studies, 
sample sets are taken from untreated site(s) and 
compared to similar, but treated site(s). Both 
samples are assumed to be equal in all aspects of 
crash causing factors except the treatment being 
studied. The CMF is then found by determining the 
ratio of the observed number of accidents in the 
after period to those in the before period. The 
number of accidents in the before period at the 
treatment site(s) is multiplied by this ratio to 
determine the expected accidents at the treatment 
group had no treatment been applied. However, 
comparison studies have a setback; they assume 
that both treated and untreated sites have the same 
attributes and that there are no other safety 

mitigating factors affecting beyond the treatment. 
Realistically, this is difficult to achieve.  
     The EB methodology has been used by 
transportation practitioners for over 30 years in 
performing statistically before–after studies of the 
safety effect of treatments applied to transportation 
facilities. The EB is appropriate because of its 
ability to account for regression-to-the mean 
(RTM) and changes in traffic volumes over time at 
the treatment sites [Elvik, 2008].  A detailed 
discussion on the EB framework its relevance to 
the before-and-after studies are provided by Hauer 
[1997] and Hauer et al. [2002]. Practitioners have, 
therefore, generally accepted the use of this 
approach in specifying CMFs for use in designing 
countermeasures for hazardous locations on 
existing or proposed facilities [Persaud and Lyon, 
2007]. 
     Part of the EB process involves using SPFs to 
determine the predicted number of accidents for 
both before and after periods.  The two common 
types of SPFs are the Poisson and negative 
binomial (NB) models [Elvik, 2008].  Accident 
data is discrete, non-negative, and sporadic. 
Therefore, the Poisson model is the most fitting 
and natural first choice for modeling [Poch and 
Mannering, 1996]. However, the Poisson model 
has a key limitation. It assumes that the variance of 
the dependent variable is constrained to be 
approximately equal to its mean. In contrast, 
accident and traffic data are likely to be over-
dispersed hence the variance will tend to be 
significantly greater than the mean [Tegge, Jo and 
Ouyang, 2010]. In such situation, the NB is the 
most appropriate distribution to be used in SPF 
development. 
 
3. Methodology 
Theoretically, the EB is used to estimate the 
expected number of accidents (EA) that would have 
occurred at a given treated site(s) in the after 
period had there not been any treatment. The safety 
effect of the given treatment is then compared to 
the treated site(s) with number of observed/actual 
accidents (OB). Initially, the expected number of 
accidents (EB) is estimated using two variables: the 
number of the observed accidents (OB) in the 
‘before’ period; and the SPF predicted number of 
accidents (PB). PB, can be from the same or similar 
sites, hence referred to as the reference group. The 
reference group is a collection of either the same or 
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similar sites that have comparable geometric, 
traffic volume, and traffic flow characteristics to 
the treatment sites, but where the countermeasure 
has not been installed. The mathematical procedure 
in developing the CMF is presented in the 
flowchart in Figure 1. 
 

   

STEP I: Determine the sum of predicted accidents in the 
before period (PB) 

 

  

STEP II: Determine the sum of expected accidents in the 
before period (EB) 

 

  

STEP III: Determine the sum of predicted accidents in the 
after period (PA) 

 

  

STEP IV: Determine the sum of expected accidents in the 
after period (EA) 

 

  

STEP V: Determine the variance of the sum of expected 
accidents in the after period 

 

  

STEP VI: Determine the sum of observed/actual accidents 
in the after period (OA) 

 

  
STEP VII: Determine the Crash Modification Factor (CMF) 

 

  

STEP 
VIII: Determine the variance of the CMF  

 
Figure 1. Procedure for developing the crash modification 
factor 
 
 
Both OB and PB are combined by using a weight 
(w) factor which determines their significance. 
Thus, EB also referred to as the unadjusted EB 
estimate can be represented as follows: 
 

 (1) 
 
where n is the period of observation and w is the 
weight factor estimated as 
 

 
(2) 

 
Where k is the over-dispersion parameter  
 

computed when the NB regression distribution, 
SPF is calibrated.  
     The estimated EB is used in the development of 
CMFs as published in the Federal Highway 
Administration (FHWA) guide for developing 
CMF [Gross et al., 2010].  The development of 
CMF is presented in several steps. In the initial 
step, the expected number of accidents in the 
‘after’ period in the treatment group that would 
have occurred without treatment, (EA) is calculated 
as follows: 
 

 (3) 
 
where EB, and PB are as previously defined, and PA, 
is the predicted number of accidents in the ‘after’ 
period. The variance of EA is estimated as follows: 
 

 (4) 
 
Finally, the CMF is approximately equal to the 
‘after’ period accident counts divided by the EA. It 
is an approximate because of a small adjustment 
based on EA and with the variance expressed as 
follows: 
 

 

(5) 
 

(6)

 
Where OA is the number of observed/actual 
accidents in the ‘after’ period for the treatment 
sites and EA is as previously described.  
 
4. Data Analysis and Result Interpretation 
This study analyzes a set of thirteen signalized 
intersections to determine the safety effectiveness 
of RLCs at signalized intersections in Virginia 
Beach. In 2009, the city installed RLCs at the 
study intersections as shown in Figure 2.  The goal 
was to reduce red-light running activities and 
improve safety at the intersections. The overall 
number of accidents in 2010 (after the installation 
of RLCs) was compared to those in 2008 (before 
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the installation of RLCs). Safety improved at 10 
intersections (marked in blue in Figure I) and 
deteriorated at three intersections (marked in red in 
Figure I). This result is consistent with the findings 
of other studies cited in the literature review. That 
is sometimes RLC are associated with safety 
degradation. 
     The traffic vehicle volumes and lane 
configurations for each of the major and minor 
approaches shown in Figure 1, are presented in 
Tables 1 and 2. In both tables, some intersections 
seem to have significant traffic volume differences; 
this could be due to change in travel patterns 
attributed to either construction activities or 
implementation of strategic growth areas. Columns 
three and four show both major and minor entering 

AADTs for 2008 and 2010 determined using PM 
Peak traffic volumes reported by the city of 
Virginia Beach. The AADT was calculated as 
follows: 
 

 (7) 
 
     where, DDHV is the directional design hourly 
volume, K is the proportion of daily traffic 
occurring during the peak hour, and D is the 
proportion of peak hour traffic travelling in the 
peak direction of flow. All studied intersections are 
located in urban areas and are radial routes and as 
recommended by the HCM [2010], a K of 0.09 and 
a D of 0.55 are applied.   

 

 
Figure 2. Study site locations 

SOURCE: Google Maps and David M. Putney / The Virginian-Pilot 
 
 

Table 1a. Traffic volumes and lane configurations for major approaches 
  2008 2010 No. of Lanes 

NAME AADT AADT L T T+R R 
1 Independence Blvd. 90566 73636 1 3 0 1 
2 Dam Neck Rd. 49495 47758 2 3 0 1 
3 Indian River Rd. 57192 50768 2 3 0 1 
4 Military Hwy. 62990 65010 1 3 0 1 
5 Lynnhaven Pkwy. 33535 32384 2 2 0 1 
6 Northampton Blvd. 54869 52943 2 4 0 1 
7 Princess Anne Rd. 44364 45293 2 4 0 1 
8 Independence Blvd. 44747 47879 2 3 1 1 
9 Virginia Beach Blvd. 42549 41071 2 4 0 1 

10 Holland Rd. 31980 30858 1 2 0 1 
11 Princess Anne Rd. 37819 35980 2 1 1 0 
12 Dam Neck Rd. 38307 37556 1 2 0 1 
13 Independence Blvd. 64102 59354 2 4 0 1 
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Table 1b. Traffic volumes and lane configurations for minor approaches 

  2008 2010 No. of Lanes 
NAME AADT AADT L T T+R R 

1 Baxter Rd. 25374 25273 3 1 0 1 
2 General Booth Blvd. 28949 27318 2 3 0 1 
3 Kempsville Rd. 35515 30040 2 2 0 1 
4 Indian River Rd. 33939 30566 2 1 1 1 
5 International pkwy. 20505 19293 2 1 0 1 
6 Diamond Springs Rd. 20889 19712 2 3 0 1 
7 Lynnhaven Pkwy. 28404 26727 2 2 0 2 
8 Virginia Beach Blvd. 37071 38465 2 4 0 1 
9 Great Neck Rd. 37632 35354 1 2 0 1 

10 Rosemont Rd. 27818 26251 1 2 0 1 
11 Dam Neck Rd. 38089 34869 2 4 0 1 
12 London Bridge Rd. 30565 28566 1 0 1 1 
13 Bonney Rd. 13341 12586 2 2 0 1 

 
 
As shown in Table 2, the overall number of 
accidents reduced from 299 in 2008 to 226 in 
2010, a 24.41% reduction in crashes. Since there 
were no geometrical changes and no data to state 
otherwise, this study used the change in traffic 
volumes and the resulting number of accidents to 

be due to the RLCs implementations at the study 
sites. Also, presented in Table 2 are the SPF 
predicted numbers of accidents for each 
intersection.  
 

 
Table 2.‘Before’ and ‘After’ period traffic volumes, observed accidents and 

SPF predicted accidents 

2008 Period 'Before' 
RLCs Installation 

2010 Period 'After' 
RLCs Installation 

INTERSECTION 
Actual 

Crashes 
SPF 

Crashes 
Actual 

Crashes 
SPF 

Crashes 
1 Baxter Rd. & Independence Blvd. 12 16 9 17 
2 General Booth Blvd. & Dam Neck Rd. 23 20 36 18 
3 Indian River Rd. & Kempsville Rd. 28 23 25 19 
4 Indian River Rd. & Military Hwy. 35 22 18 19 
5 Lynnhaven Pkwy. & International pkwy. 11 17 4 15 
6 Northampton Blvd. & Diamond Springs Rd. 18 16 9 15 
7 Princess Anne Rd. & Lynnhaven Pkwy. 22 20 27 18 
8 Virginia Beach Blvd. & Independence Blvd. 30 25 15 23 
9 Virginia Beach Blvd. & Great Neck Rd. 22 26 4 22 

10 Holland Rd. & Rosemont Rd. 30 21 24 18 
11 Princess Anne Rd. & Dam Neck Rd. 26 27 30 22 
12 London Bridge Rd. & Dam Neck Rd. 23 22 14 19 
13 Independence Blvd. & Bonney Rd. 19 13 11 13 

SUM OF ACCIDENTS 299 268 226 239 
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Table 3. Negative binomial parameter estimates for the ‘before’ (2008) period 

   
95% Wald Confidence 

Interval Hypothesis Test 

Parameter B 
Standard 

Error Lower Upper 
Wald Chi 
- Square df p-value 

Intercept 2.450 0.401 1.665 3.236 37.418 1 0.000 
Major road entering AADT -4.10E-06 4.43E-06 -1.28E-05 4.56E-06 0.856 1 0.006 
Minor road entering AADT 2.62E-05 9.34E-06 7.85E-06 4.45E-05 7.845 1 0.005 

Dispersion 0.007 0.021 -0.034 0.048 
Dependent Variable: Number of Accidents per year 

 
Before red light camera installation - 2008 
The before period is the period before the RLCs 
were installed in 2008.  The reported number of 
accidents is presented in column three. The 
predicted number of accidents per year is presented 
in columns four in Table 2. The predicted (SPF 
Crashes) average accidents for each intersection 
are estimated using the NB regression coefficients 
presented in Table 3.  
     Table 3 presents the NB regression coefficients 
for each of the variables along with their standard 
errors, Wald chi-square values, p-values and 95% 
confidence intervals for the coefficients. All the 
coefficients are statistically significant at a 
significance level of 0.05. The model coefficient 
indicate that major road entering AADT (-4.10E-
06) has a decreased effect on the estimated number 
of accidents per year. This negative effect could be 
attributed to the fact that as the traffic volume 
increases, speed decreases and drivers become 
more careful due to the limited room to maneuver. 
The minor road entering AADT with a coefficient 
of 2.62E-05 has an increased effect on the 
estimated number of accidents per year.  This 
positive effect could be attributed to the fact that as 
the traffic volume increases speed increases 

because drivers are not as careful due to the 
available room to maneuver. 
     Table 3 also presents the dispersion coefficient, 
a Poisson model is one in which this value is 
constrained to zero. Here, the coefficient is a 
positive and not zero, suggesting that the NB 
model form is more appropriate than the Poisson. 
A greater than zero suggests over-dispersion that is 
the variance is greater than the mean.  
     Using the NB coefficients in Table 3, the SPF 
predicted estimate for each intersection is 
estimated and presented in column six of Table 1 
as SPF Crashes in the before period (2008) and 
then summed up to find the SPF predicted 
estimates (PB) of 268 accidents per year. 
 
After red light camera installation - 2010 
The after period is the period after the RLCs were 
installed in 2010. The reported and predicted 
numbers of accidents per year are respectively 
presented in columns five and six of Table 1. The 
predicted (SPF Crashes) average accidents for each 
intersection are estimated using the NB distribution 
model where the resultant values are presented in 
Table 4.  
 

 
Table 4. Negative binomial parameter estimates for the ‘after’ (2010) period 

   
95% Wald Confidence 

Interval Hypothesis Test 

Parameter B 
Std. 

Error Lower Upper 
Wald Chi 
- Square df p-value 

Intercept 2.316 1.143 0.076 4.556 4.108 1 0.043 
Major road entering AADT -5.31E-07 1.45E-05 -2.88E-05 2.78E-05 0.001 1 0.007 
Minor road entering AADT 2.23E-05 2.70E-05 -3.06E-05 7.52E-05 0.682 1 0.003 

Dispersion 0.272 0.018 0.107 0.307 
 

Dependent Variable: Number of Accidents per year 
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     Table 4 presents the NB regression coefficients 
for each of the variables along with their standard 
errors, Wald chi-square values, p-values and 95% 
confidence intervals for the coefficients. All the 
coefficients are statistically significant at a 
significance level of 0.05. The model coefficient 
indicates that major road entering AADT (-5.31E-
07) has a decreased effect on the estimated number 
of accidents per year. This negative effect could be 
attributed to the fact that as the traffic volume 
increases speed decreases and drivers become 
more careful due to the limited room to maneuver. 
The minor road entering AADT (2.23E-05) has an 
increased effect on the estimated number of 
accidents per year. Additionally, the dispersion 
coefficient is more than zero, thus, rending the NB 
model appropriate. 

Using the NB coefficients in Table 4, the SPF 
predicted estimate for each intersection is 
estimated and presented in column 10 of Table 1 as 
SPF Crashes in the ‘after’ period (2010) and then 
summed up to find the SPF predicted estimates 
(PA) of 239 accidents per year.  
 
Crash modification factor – Empirical Bayes 
before-after  
With the sum of the observed and predicted 
accidents in both the before (2008) and after 
(2010) periods determined as presented in Table 1, 
the EB studies are used to estimate the resultant 
CMF as discussed in the Methodology section and 
presented in Table 5. 
 

 
Table 5. Crash modification factor for red light cameras at signalized intersections 

Parameter Value 
k 0.272 
w 0.015 
�� 298.534 
�� �� 0.892 
�� 266.167 
��� ��  233.716 
CMF  0.846 
��� ���  0.005 
�������� ���  0.074 
95% Confidence is 0.846 ± 1.645*0.0.074 0.701 to 0.992 

 
     Table 5 also presents EB, the ratio of the ‘after’ 
period SPF estimates to the ‘before’ period SPF 
estimates �� �� , EA and its variance. These 
values are used to estimate the CMF. The CMF 
variance and standard error are also determined to 
assist in CMF justification or certainty check as 
presented in Table 5. Taking the square root of the 
variance, the standard error of the CMF is 0.074. 
At 95% confidence level, the resulting CMF is 
significant and acceptable since the upper value is 
less than 1.0. A less than one CMF value shows 
improvement in safety, a CMF value that is 
approximately 1shows no effect on safety, and a 
larger than one value shows degradation in safety. 
More observations or a larger sample size is 
required to detect the same RLC impact with 95 % 
certainty. Therefore, it can be interpreted that 
installation of RLCs in urban areas can reduce the 
annual numbers of accidents by approximately 
15.4% [(1-0.846)*100].  

5. Discussion and Conclusions 
The results found by this study show that RLC 
installations at intersections may have a significant 
and measurable impact on safety. Specifically, this 
study shows that installation of RLCs at 
intersections, may improve safety by 
approximately 15.4%.  
     The models presented are specific and have 
been tested and used before. Therefore, appropriate 
for this study. The findings of this study may not 
apply at other signalized intersections, such as 
those located in rural areas, the same concept can 
be applied. To achieve a more precise outcome, 
this study suggests that; (1) the number of 
observations be increased; and (2) as the 
technology for collecting traffic and crash data 
becomes more familiar and improved, appropriate 
SPFs and CMFs can be developed and included in 
future editions of the HSM. 
     Improved knowledge on this topic could lead to 
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efficient traffic planning and control of present and 
future transportation facilities hence improving 
safety. In addition, this could lead to (1) better 
understanding of what facilities and conditions that 
are safer for drivers, (2) identification of other 
variables that might influence roadway safety such 
as road surface condition, human and weather 
features, and (3) better understanding of the 
already identified variables. Thus, continuing to 
design and maintaining safer transportation 
facilities. 
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