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Abstract  

One of the most important points in a supply chain is customer-driven modeling, which reduces the bullwhip 

effect in the supply chain, as well as the costs of investment on the inventory and efficient transshipment of 

the products. Their homogeneity is reflected in the inventory-routing problem, which is a combination of 

distribution and inventory management. This paper considers a multi objective IRP in a two-level supply 

chain consisting of a distributor and a set of retailer. This problem is modeled with the aim of minimizing bi-

objectives, namely the total system cost and risk-based transportation cost. Products are delivered to 

customers by some heterogeneous vehicles with specific capacities through a direct delivery strategy. 

Additionally, storage capacities are limited and the shortage is assumed to be impermissible. To validate this 

model, the epsilon constraint method is used for solving the model. Since problems without distribution 

planning are very complex to solve optimally, the problem considered in this paper also belongs to a class of 

NP-hard ones. Therefore, a multi-objective imperialist competitive algorithm (MOICA) as a well-known 

multi-objective evolutionary algorithm is used and developed to solve a number of test problems. 

Furthermore, the computational results are compared to show the performance of the proposed MOICA. 

 

Keywords: Inventory-routing problem; Multi-objective optimization; Epsilon constraint method; 

Meta-heuristics algorithm. 
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1. Introduction 

In the recent years, the development of the 

chains and the created competition among 

them, and also the development of the 

information management and the greater 

awareness of the companies of their chain 

performance, have led to a severe 

consideration for the coordination, and 

integration of the various elements of the 

supply chain in order to achieve the 

competitive advantage. 

An inventory-routing problem (IRP) is 

derived from a vehicle routing problem 

(VRP), in which inventory control and 

routing decisions are merged. The IRP is 

mostly used in vendor management inventory 

(VMI) systems, in which a vendor is 

responsible for controlling the timing and 

size of deliveries to customers. In return for 

this benefit, the vendor ensures that 

customers are not faced with shortages. Due 

to the timing of placed orders in the 

conventional vendor-customer relationship, 

in which customers ordered products from 

vendors, efficiency could decrease drastically 

and as a result, inventory and distribution 

costs would increase significantly. 

Nevertheless, cost reductions resulting from 

the implementation of VMI systems are not 

achieved easily in practice. Especially since 

the increasing number and variety of 

customers are only adding to this complexity. 

However, the IRP can make this achievement 

feasible through an optimal distribution plan, 

which minimizes total system costs. 

We limit our literature review to 

investigations addressing one or many of the 

following issues: period type, product type, 

fleet type, and objective function type that 

mostly solved by meta-heuristic algorithms. 

Having analyzed the industrial aspects of the 

problem, an inclusive classification and 

review of previous studies have been 

presented direct shipment is one of many 

distribution strategies used in the IRP 

problem, in which each vehicle only delivers 

products to retailers once during each 

period. For example, Barnes and Bassok 

[Barnes and Bassok, 1997] studied the 

efficiency of the direct shipment strategy in 

an IRP on an unlimited time horizon, in 

which possible retailer demand is considered 

through a distribution function and shortage 

is allowed  

Many authors have used their meta-heuristics 

to solve their problem. In the following, we 

will briefly mention them. 

Zhao et al. [Zhao et al., 2008] proposed a 

partition approach to an IRP and applied a 

tabu search algorithm (TS) to find the 

retailers’ optimal partition regions. Also, 

hunag and Lin [Huang and Lin, 2010] used a 

modified ant colony optimization (ACO) 

algorithm for an IRP with demand 

uncertainty. Their feature is multi-product, 

which uses the adaptive ACO to solve it. In 

the following Moin et al. [Moin et al., 2011] 

presented an efficient hybrid genetic 

algorithm (HGA) for the multi-product multi-

period IRP. They applied this algorithm and 

demonstrated the effectiveness of algorithm 

with numerical examples. 

Other meta-heuristic methods, such as 

variable neighborhood search (VNS) was 

also used for the IRP in a supply chain and 

compared with other existing methods [Liu 

and Chen, 2012]. Also, Popovic et al. 

[Popovic et al., 2012] applied the VNS 

algorithm for the IRP in fuel delivery and 

developed the stochastic VNS algorithm to 

solve their MILP model. Other authors like 

Nekooghadirli [Nekooghadirli et al, 2014] 

proposed a new bi-objective location-

routing-inventory problem in a distribution 

http://www.sciencedirect.com/science/article/pii/S1366554510000177#!
http://www.sciencedirect.com/science/article/pii/S0957417411014436#!
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network by meta-heuristics. They used four 

multi-objective algorithms; namely multi-

objective imperialist competitive algorithm 

(MOICA), multi-objective parallel simulated 

annealing (MOPSA), non-dominated sorting 

genetic algorithm (NSGA-II) and Pareto 

archived evolution strategy (PAES). The 

results showed that the MOICA has the best 

performance. 

In recent years, some authors presented a 

multi-objective IRP model that balances the 

transportation cost, holding cost and lost sale. 

They used simulated annealing (SA) and TS 

to solve the model [Mirzaei and Seifi, 2015]. 

Also Ghorbani and Akbari Jokar [Ghorbani 

and Akbari Jokar, 2016] presented a hybrid 

imperialist competitive-simulated annealing 

(ICA-SA) algorithm for a multi-source multi-

product location-routing-inventory problem. 

The results showed that the ICA-SA 

algorithm from the view of solving time was 

better than the available algorithm. 

Tavakkoli-Moghaddam et al. [Tavakkoli-

Moghaddam et al., 2016] proposed a fuzzy 

method to solve a bi-objective multi-product 

VRP with heterogeneous fleets. The 

proposed fuzzy approach was used to solve 

the bi-objective mixed-integer linear problem 

to find the most preferred solution. Also, they 

used a Pareto-optimal solution with the ε-

constraint method, in order to show the 

conflict between two objectives. Also, in 

order to show the conflict between 

two objective functions in an excellent 

fashion, they used the Pareto-optimal 

solution with the ε-constraint method to 

demonstrate the efficiency and validity of the 

presented model. Also, Azadeh et al. [Azadeh 

et al., 2017] used a GA-Taguchi based 

approach for an IRP of a single perishable 

product with transshipment. They assumed 

that product deteriorates at the exponential 

rate during the time at the warehouse.  

Rayat et al. [Rayat et al., 2017] proposed a bi-

objective reliable location-inventory-routing 

problem with partial backordering under 

disruption risks. Finally, they used an 

archived multi-objective simulated annealing 

(AMOSA) and NSGA-II to solve their 

model. Also, Alinaghian and Shokouhi 

[Alinaghian and Shokouhi, 2017] presented a 

multi-depot multi-compartment VRP. 

Because their model was NP-hard, they used 

the hybrid ALNS to solve the model. Also, 

the results demonstrated the good 

performance of the proposed algorithm. 

Some authors used probabilistic methods due 

to the uncertain nature of the model 

parameters. For example, Rahimi et al. 

presented the stochastic model to the IRP and 

considered profit, service level and green 

criteria. Because the demand and 

transportation costs were considered 

uncertain, they used the fuzzy method to 

solve the model [Rahimi et al., 2017]. 

Nikhah et al. [nikkhah, Hoseini Motlagh and 

joker, 2017] presented a Two-Phase Hybrid 

Heuristic Method for a Multi-Depot 

Inventory-Routing Problem. The objective 

function of their problem was to minimize 

sum of the holding cost at distributer centers 

and the customers, and of the transportation 

costs associated to the preformed routes. In 

the proposed hybrid heuristic method, after a 

Construction phase (first phase) a modified 

VNS, with distinct neighborhood structures, 

was used during the improvement phase 

(second phase). Moreover, they used SA 

concept to avoid that the solution remains in 

a local optimum for a given number of 

iterations. 

Also, Gatreh Samani and Hoseini Motlagh 

[Gatreh Samani and Hoseini Motlagh, 2017] 
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proposed a hybrid algorithm for a two 

echelon location-routing problem with 

Simultaneous pickup and delivery under 

fuzzy demand. They use a mixed integer 

linear programming model for a two-echelon 

location-routing problem with simultaneous 

pickup and delivery. Also, a combined 

heuristic method based on simulated 

annealing (SA) algorithm and genetic 

algorithm (GA) is devised for solving the 

presented model. 

Ghannadpour [Ghannadpour, 2018] 

compiled an evolutionary approach for 

energy minimizing vehicle routing problem 

with time windows and customers’ priority. 

He tried to maximize the customers' 

satisfaction using their preference and 

considers the customers' priority for 

servicing. Also, in this paper, a multi-

objective evolutionary algorithm was 

proposed and its performance on several 

completely random instances is compared 

with NSGA II and CPLEX Solver. 

To summarize this paper, in Table 1, the 

methodology of the work of other authors is 

described. Also, this table illustrates the 

classification of the previously presented 

papers in the IRP literature. 

This paper examines a multi-product, multi-

period IRP with the aim of minimizing the 

total system costs and transportation risks. 

System costs include implementation and 

start-up, distribution, inventory storage and 

maintenance costs. The IRP is studied in a 

supply chain consisting of two parts, a 

supplier, and a set of retailers (i.e., 

customers), in which a certain amount of each 

product is distributed between retailers using 

direct delivery strategy and some 

heterogeneous fleet of vehicles with limited 

capacities. Providing service to each retailer 

takes one period; meaning that each retailer 

is visited by a vehicle utmost once during 

each period.  

The mentioned problem also includes the 

recursive mode. In other words, vehicles 

travel a trip during each period, and so 

customers are divided into two groups; 

namely, customers on inhaul and backhaul 

trips.  

It is to be noted that customers on the inhaul 

trip are always the first priority. Customers 

on the inhaul line refer to customers to whom 

products are being delivered, and customers 

on the backhaul line are those from whom 

vehicles receive products on their return trip. 

Furthermore, vehicles always start a round 

trip from the depot station and return to this 

station after visiting one or more customers. 

Backhaul subject can be observed in the 

supply of automobile parts or gas delivery to 

subscribers. 

 For example, a company supplying 

automobile parts the number of pieces 

delivered to their customers and some pieces 

from other customers received that these 

received parts could be defective parts. 

The important subject is that except for the 

investigations by Nolz et al. [Nolz et al., 

2014] and Niakan and Rahimi [Niakan and 

Rahimi, 2015], who introduced a risk factor 

in the IRP by considering it in their problems, 

there was no other study that considered such 

issues in IRPs. In this paper, we define the 

transportation risk in the objective function. 

So my contribution in this journal is: 

 Consider the transportation risk in the 

model. 

 Consider the backhaul transportation 

option on the IRP model. 

 Consider the problem in multi-

objective form, multi-product, multi-

period, and heterogeneous fleet. 
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Table 1. Classification of the literature review for this article 

Author(s) 
Objective 

Function 
Date Nature 

Heteroge

neous 

Fleet 

 Multi-

Product  

Multi-

Period 
Solving Method 

Aziz and Moin 

(2007) 
Single Certain    Hybrid GA 

Zhao et al. (2008) 

 
Single Certain    TS algorithm 

Huang and Lin 

(2010) 
Single Uncertain    ACO algorithm 

Moin et al. (2011) Single Certain    Hybrid GA 

Liu and Chen (2012) Single Certain    VNS 

Popovic et al. 

(2012) 
Single Certain    VNS 

Nekooghadirli and 

Tavakoli-

Moghadam (2014) 

Multi Uncertain    

MOICA-

NSGAII-MOSA-

PAES 

Amorim and 

Almada (2014) 
Multi Certain    

Epsilon 

constraint- 

NSGAII 

Nolz et al. (2014) Multi Certain    ALNS 

Mirzaei and Seifi 

(2015) 
 Multi Certain    Hybrid (TS-SA) 

Niakan and Rahimi 

(2015) 
Multi Uncertain    Exact- Fuzzy 

Ghorbani and 

Akbari Jokar (2016) 
Single Certain    

Hybrid (ICO-

SA) 

Azadeh et al. (2017) Single Certain    GA 

Alinaghian and 

Shokouhi (2017) 
Single Certain    ALNS 

Rahimi et al. (2017) Multi Uncertain    Fuzzy 

Rayat et al. (2017) Multi Certain    MOSA-NSGAII 

This paper Multi Certain    MOICA 

 

2. Model Description 
This section presents the mathematical model 

of the multi-period, multi-product IRP with 

backhaul transportation, which can be 

formulated in the form of a mixed-integer 

programming model. 

 The proposed model is based on the 

following assumptions: 

 Model is a single depot that services to 

all of the customers (retailers). 

 Distribution fleet is heterogeneous, but 

each of them has a limited and specific 

capacity. 

 Distances between points are known. 

 The customer's stock is limited. 

 Inhaul customers are preferred to 

backhaul customers to receive or send 

goods. 

 There is no route that merely includes 

the customers of the backhaul line. 

 Demands of customers are 

predetermined. 

 Shortages are not allowed. 

 The strategy of sending or receiving 

goods is direct shipment. In other 

words, in a given period, the total 

customer demand must be done and 

cannot be splitted. 

http://www.sciencedirect.com/science/article/pii/S1366554510000177#!
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Before describing the model, the notations 

used to describe the model are defined below. 

2.1 Sets and indices 

i, j, µ, λ: Demand nodes index 

A: Total number of customers 

u: Index of customers on the inhaul trip 

w: Index of customers on the backhaul trip 

{0,U+W+1}: Depot index 

v: Vehicle index 

p: Distributable product index 

t: Index of time periods 

 

2.2 Parameters 

cfv
t : Fixed costs of using vehicle v for a 

period of t. 

cvv
t : Variable costs of using vehicle v for a 

period of t. 

duit
p : Demand of the i-th customer on the 

initial trip for product p in a period of t. 

dwit
p : Demand of the i-th customer on return 

trip for product p in a period of t. 

Qv : Capacity of vehicle v per unit weight. 

rijvt : Risk between customers i and j by 

vehicle v in a period of t. 

Ci : Inventory capacity (storage capacity) of 

the i-th customer. 

Sij : Edge length between customers i and j. 

Cijvt : Costs of traverse between customers i 

and j by vehicle v in a period of t. 

yi
p : Storage and maintenance costs 

undergone by the i-th customer for 

product p. 

qp : Weight of the p-th product. 

 

 

2.3. Variables 

xijvt  : Binary variable (1, if vehicle v travels 

from i to j; 0, otherwise). 

Mivt
p : Amount of product p delivered to the i-

th customer by vehicle v at the beginning 

of the t-th period (inhaul trip). 

Nivt
p : Amount of product p received from the 

i-th customer by vehicle v at the 

beginning of the t-th period (backhaul 

trip). 

Iit
p : Amount of inventory of product p held 

by the i-th customer at the end of period 

t. 

Bijvt
p : The amount of product p transported 

from customer i to customer j by vehicle 

v during period t. 

 

2.4. Mathematical model 
Min 𝑍1

= ∑ ∑ ∑ 𝑐𝑓𝑣
𝑡. 𝑥0𝑗𝑣𝑡

𝑈+𝑊

𝑗=1

𝑉

𝑣=1

𝑇

𝑡=1

+ ∑ ∑ ∑ ∑(𝑐𝑣𝑣
𝑡 . 𝑆𝑖𝑗)𝑥𝑖𝑗𝑣𝑡

𝑉

𝑣=1

𝑈+𝑊+1

𝑗=1

𝑈+𝑊

𝑖=0

𝑇

𝑡=1

+ ∑ ∑ ∑ 𝑦𝑖
𝑝

. 𝐼𝑖𝑡
𝑝

𝑃

𝑝=1

𝑈+𝑊

𝑖=1

𝑇

𝑡=1

  ;  (1) 

Min 𝑍2 = ∑ ∑ ∑ ∑ 𝑟𝑖𝑗𝑣. 𝑥𝑖𝑗𝑣𝑡

𝑉

𝑣=1

𝑈+𝑊

𝑗=0

𝑈+𝑊

𝑖=0

𝑇

𝑡=1

 ;  (2)   

Subject to: 

𝐼𝑖,𝑡−1
𝑝

− 𝐼𝑖,𝑡
𝑝

+ ∑ 𝑀𝑖𝑣𝑡
𝑝

= 𝑑𝑢𝑖𝑡
𝑝

𝑉

𝑣=1

 ;  ∀ 𝑖

∈ {1, … , 𝑈}, 𝑝, 𝑡 ;  (3) 

𝐼𝑖,𝑡−1
𝑝

− 𝐼𝑖,𝑡
𝑝

− ∑ 𝑁𝑖𝑣𝑡
𝑝

= −𝑑𝑤𝑖𝑡
𝑝

  ; ∀ 𝑖

𝑉

𝑣=1

∈ {𝑈 + 1, … , 𝑈 + 𝑊}, 𝑝, 𝑡  ; (4)      

∑ ∑ 𝐵𝜇𝑖𝑣𝑡
𝑝

− ∑ ∑ 𝐵𝑖𝜆𝑣𝑡
𝑝

= ∑ 𝑀𝑖𝑣𝑡
𝑝

  ;  (5)

𝑉

𝑣=1

𝑈+𝑊+1

𝜆=1

𝑉

𝑣=1

𝑈

𝜇=0

𝑉

𝑣=1

 

∀ 𝑖 ∈ {1, … , 𝑈}, 𝑝, 𝑡  ,   𝑖 ≠ µ ≠ 𝜆 

∑ ∑ 𝐵𝑖𝜆𝑣𝑡
𝑝

− ∑ ∑ 𝐵𝜇𝑖𝑣𝑡
𝑝

= ∑ 𝑁𝑖𝑣𝑡
𝑝

𝑉

𝑣=1

𝑈+𝑊

𝜇=1

𝑉

𝑣=1

𝑈+𝑊+1

𝜆=𝑈+1

𝑉

𝑣=1

  ;  (6) 

∀ 𝑖 ∈ {𝑈 + 1, … , 𝑈 + 𝑊} , 𝑡, 𝑝  ;  𝑖 ≠ µ ≠ 𝜆 

∑ ∑ 𝑥𝑖𝑗𝑣𝑡 ≤ 1  ;    ∀ 𝑗 ∈ {1, … , 𝑢 + 𝑤 + 1}, 𝑡 ;  (7)

𝑈+𝑊

𝑖=0

𝑉

𝑣=1
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∑ 𝑥0𝑗𝑣𝑡 ≤ 1

𝑈+𝑊

𝑗=1

    ;   ∀ 𝑣, 𝑡  ;  (8) 

∑ 𝑥𝑖,(𝑈+𝑊+1)𝑣,𝑡 = ∑ 𝑥0𝑗𝑣𝑡

𝑈+𝑊

𝑗=1

𝑈+𝑊

𝑖=1

 ;   ∀ 𝑣, 𝑡  ;  (9) 

∑ 𝑥𝑖𝜇𝑣𝑡 − ∑ 𝑥𝜇𝑗𝑣𝑡 = 0 ;  (10)   

𝑈+𝑊

𝑗=1

𝑈+𝑊

𝑖=1

 

∑ ∑ ∑ 𝑥𝑖𝑗𝑣𝑡 = 0     ;      ∀ 𝑡 ;   (11)

𝑉

𝑣=1

𝑈

𝑗=1

𝑈+𝑊

𝑖=𝑈+1

 

∑ 𝐼𝑖𝑡
𝑝

≤ 𝐶𝑖      ;       ∀ 𝑖 ∈ 𝐴

𝑃

𝑝=1

 , 𝑡 ;   (12)  

∑ ∑ 𝑥𝑖𝑗𝑣𝑡 ≤ |𝐻| − 1   ;  (13)   

𝑗∈𝐻𝑖∈𝐻

 

∀ 𝑣, 𝑡 ,   𝐻 ⊂ 𝐴 , 2 ≤ |𝐻| ≤ 𝑢 + 𝑤 − 2 

∑ 𝑞𝑝

𝑃

𝑝=1

𝑀𝑗𝑣𝑡 . 𝑥𝑖𝑗𝑣𝑡 ≤ ∑ 𝑞𝑝

𝑃

𝑝=1

. 𝐵𝑖𝑗𝑣𝑡
𝑝

≤ (𝑄𝑣 − (∑ 𝑞𝑝.

𝑃

𝑝=1

𝑀𝑖𝑣𝑡)) 𝑥𝑖𝑗𝑣𝑡  ; (14) 

∀𝑖, 𝑗 ∈ {0,1, … , 𝑈} , 𝑗 ≠ 0 , 𝑣 , 𝑡 

0 ≤ ∑ 𝑞𝑝

𝑃

𝑝=1

. 𝐵𝑖𝑗𝑣𝑡
𝑝

≤ 𝑄𝑣. 𝑥𝑖𝑗𝑣𝑡  ;  (15) 

∀ 𝑖 ∈ {𝑈, … , 𝑈 + 𝑊} , 𝑗 ∈ {𝑈 + 1, … , 𝑈 + 𝑊 + 1}, v,t 

𝑆0,𝑈+𝑊+1 = 𝑆𝑈+𝑊+1,0 = 0 ; (16) 

𝐶0,𝑈+𝑊+1,𝑣,𝑡 = 0 ;  (17)  

𝑆𝑖𝑖 ≫ ∞  ;  (18) 

𝑀𝑖𝑣𝑡
𝑝

≥ 0 , 𝑁𝑖𝑣𝑡
𝑝

≥ 0 , 𝐼𝑖𝑡
𝑝

≥ 0 , 𝐵𝑖𝑗𝑣𝑡
𝑝

≥ 0 , 𝑥𝑖𝑗𝑣𝑡

∈ {0,1}  ;  (19) 

The first objective function includes the fixed 

routing costs, shipment and delivery, and 

maintenance costs undergone by customers. 

The second objective function minimizes 

transportation risks on routes taken by 

vehicles. Equations (3) and (4) express the 
inventory balance for customers on a round 

trip with respect to their demand, 

respectively. Equations (5) and (6) represent 

the difference between the input and output 

of each node for customers on a round trip. 

Equation (7) shows that each customer is 

visited by a vehicle utmost once during each 

period. Equations (8) and (9) indicates that 

each vehicle starts at the central depot and 

returns to that after each trip. Equation (10) 

shows the continuity of the travel path. 

Equation (11) indicates that customers on the 

inhaul trip are to be visited and provided with 

service to customers on the backhaul trip. 

Equation (12) indicates compliance with the 

allowed storage capacity limit for each 

customer. Equation (13) is used to sub-tour 

elimination from vehicle routing problems. 

Equations (14) and (15) show the maximum 

and minimum load of variable products for 

each vehicle. Also, other constraints show 

assumptions and type of variables. 
 

3. Solution Approach 
In recent years, multi-objective optimization 

problems (MOP) and related solution 

methods have received extensive attention. 

When solving a multi-objective optimization 

problem, we search a set of solutions, known 

as non-dominated solutions (or Pareto-

optimal solutions), in which none of the 

members is better than the others. In general, 

the MOP can be solved with three groups of 

methods. 

The first group consists of the prior methods 

before the start of a solution. The problem is 

transformed into a single-objective problem 

and preferences of the decision-makers 

should be the priority. The second group 

comprises the posterior methods. These 

methods attempt to consider several objective 

functions simultaneously and generate a set 

of Pareto-optimal solutions, which ultimately 

allow the decision-maker to choose the most 

desirable solutions according to his 

preferences. The third group consists of the 

iterative methods, in which the decision-
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maker states his/her preferences during of 

solution. After several iterations, the method 

converges toward the preferable results. 

In this section, at first, a solution 

representation and creating population are 

described. Then, the MOICA algorithm is 

presented followed by the ε-constraint 

method used in this paper. In the last section, 

the proposed solving methodology based on 

mentioned methods is illustrated. 

 

3.1   Solution Representation 

In the given model, the solution of the 

problem is represented by the matrix with one 

row and U+W+V-1 columns. The rows show 

how the vehicles are viewed by customers 

and the columns show the customers 

assigned to each vehicle and prioritize the 

customer visited by vehicles. Figure 1 depicts 

a typical solution representation. 

 
Figure 1. Solution representation for five 

customers and four vehicle 

As noted above, the chromosome is 

represented by a matrix with an order of order 

(1×(U+W+V-1)). To clarify the subject, 

consider Figure 2, which is the matrix of 1×8 

and shows the schedule of customer visits by 

vehicles. The blue color shows the sequence 

of the first vehicle movement. Typically, the 

first vehicle visit customers 5, 2, and finally 

1. The red color is related to the second 

vehicle that visits customers 4 and 3, and the 

last two vehicles will not visit any customer. 

Figure 2 shows an initial population method. 

 

3.2   Multi-Objective ICA 

An imperialist competitive algorithm (ICA), 

which was first presented by Atashpaz and 

Lucas [Atashpaz and Lucas, 2007], is an 

evolutionary algorithm inspired by the social 

phenomenon, called colonialism. It is the 

population-based, similar to the other meta-

heuristic algorithms, in which solution space 

is searched by points in the name of the 

country (similar to a chromosome in the GA). 

One part of these countries is called 

imperialist, and some elements act as 

colonies. The competition between 

imperialists to develop their power by taking 

over colonial-dominated countries of other 

imperialists and changing the colonies' 

position during this competition are two key 

principles of this algorithm. 

In recent years, this algorithm was used to 

solve single-objective problems. The success 

of this algorithm also encourages solving 

multi-objective problems. Most researchers 

have reported this algorithm's success in 

solving problems with high complexity. 

Also, the novelty of this algorithm and the 

existence of a higher research potential are 

the other reasons for the recent attention to 

this algorithm.  

1. Create the count of time periods and start with the first period. 

2. Create a random sequence of inhaul customers. 

3. On the basis of capacity limitations and inventory limitations, vehicles are randomly assigned 

to customers. 

4. The process of step 3 applies to all inhaul customers. 

5. After assigning inhaul customers, create a random sequence of backhaul customers. 

6. On the basis of capacity limitations and inventory limitations, vehicles are randomly assigned 

to customers. 

7. The process of step 3 applies to all backhaul customers. 
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8. Go to the next period. 

9. This process applies to all periods, and then calculate the objective functions. 

 Figure 2. Creation method of the primary population in this model 

On the other hand in a similar article 

[Tavakkoli et al., 2016] and other papers, for 

example [Zhu et al. 2016], [Zhang et al., 

2015], [Chen et al. 2015], [Shim et al. 2015] 

and [Li et al. 2015] which was mentioned in 

this article, the authors used the MOICA, 

NSGA-II and MOSA methods to solve the 

multi-objective IRP model. Finally, the 

MOICA algorithm had the best performance 

in terms of multi-objective criteria, such as 

the number of Pareto's solution and spacing 

metric. Also, in terms of computational time, 

the MOICA algorithm is a better method that 

in short time has given acceptable quality in 

providing solutions. 

Therefore, in this paper, the MOICA 

algorithm is used to solve the model. The 

steps of this algorithm are as follows: 

 

Step 1: Initializing empires 

Since the ICA is a population-based 

approach, so as the first step in this algorithm, 

we create the Npop number of the country, 

which includes Nimp countries as imperialist 

and the rest are colonies. The countries under 

the domination of each imperialist are 

proportional to its power. For this purpose, 

first the rank of each country is calculated 

according to the FNDS Index.  

All countries on the Pareto-optimal front are 

considered rank 1. The imperialist countries 

are selected from this set, which can greatly 

impact the coverage and diversity of 

solutions. Also, we consider the following 

two assumptions: 

 Assumption 1: The power of each 

country is mainly associated with its 

rank. Considering this fact, the weakest 

country in a higher rank is more powerful 

than the strongest in a lower rank.  

 Assumption 2: Countries with the same 

rank are compared with the Sigma 

method (Equation 20) 

After applying fast non-dominated sorting, 

assuming that country c lies in Rank (C). 

In the following, using the Sigma method, the 

fitness value and power of each country are 

derived from the following equation. 

𝑃𝑜𝑤𝑒𝑟𝑐 =
1

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑉𝑎𝑙𝑢𝑒𝑐

= {∑ [
𝑓

𝑗
(𝐶)

∑ 𝑓
𝑗
(𝑖)

𝑁𝑅𝑎𝑛𝑘(𝐶)

𝑖=1

] (𝑅𝑎𝑛𝑘(𝐶) − 1) × 𝐾

𝐾

𝑗=1

} (20) 

where K is the number of objectives, f(i) is 

the value of the i-th objective, and NRank(C) is 

the number of countries lying in Rank(C). 

Finally, the power of the c-th country is 

Powerc. After determining the most powerful 

countries as imperialists, the number of 

countries under their power is obtained by: 

𝑁𝐶𝑛 = 𝑅𝑜𝑢𝑛𝑑(𝑃𝑛 ∗ 𝑁𝑐𝑜𝑙)    ;        (21) 

That;        

𝑃𝑛 = |
𝑃𝑜𝑤𝑒𝑟𝑛

∑ 𝑃𝑜𝑤𝑒𝑟𝑖
𝑁𝑖𝑚𝑝

𝑖=1

|      ;       (22) 

where Nimp is the number of imperialists and 

Ncol is the number of all colonies.  

We select 𝑁𝐶𝑛 of colonies and assign them to 

the imperialists. Finally, the more powerful 

imperialist takes a greater number of colonies 

than the weaker imperialist. 

 

Step 2: Moving the colonies towards their 

imperialists 

In this step, some colonies take some of the 

characteristics of their imperialists and move 

with a little deviation towards their 
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imperialists. These movements are calculated 

by: 

𝑥~𝑈(0, 𝛽 × 𝑑)         (23) 

𝜃~𝑈(−𝛾, 𝛾)              (24) 

Also, Figure 3 shows that the colonies 

movement to a new position in line with the 

imperialist country, where parameter β is 

greater than one and close to 2. 

   
  



New Position 

of Colony

Colony

Imperialist

d
x

Figure 3. Moving colonies to the relevant 

imperialist 

 

In this figure, parameter d is the distance 

between the colony and the imperialist and x 

is the amount of movement of a colony 

toward the imperialist that is a random 

number with a uniform distribution. Also, θ 

shows the movement angle and γ is an 

arbitrary parameter that its increase raises 

searches around the imperialist and vice 

versa. Usually, in most implementations, 

θ=π/4 is a good choice. 

 

Step 3: Change the Colonies and Imperialist 

position 

During this step, a colony may achieve a 

better position than the relevant imperialist 

due to an improvement of its position. So, 

after Step 2, the power of each country is 

calculated again in each empire and the 

strongest country acts as the new imperialist.  

 

Step 4: Calculate the total cost of empires 

In order to determine the strongest and 

weakest empires, the total cost of each empire 

is calculated, which is commensurate with 

the cost of the concerned imperialist and the 

proportion of the average cost of the colonies. 

In order to calculate the total cost, all 

objective functions should be considered 

according to the two criteria of FNDS and 

Sigma as follows: 

𝑇𝐶𝑛

= 𝐶𝑜𝑠𝑡(𝑖𝑚𝑝𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑡𝑛)

+ 𝜉. 𝑚𝑒𝑎𝑛{𝐶𝑜𝑠𝑡(𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠 𝑜𝑓 𝑒𝑚𝑝𝑖𝑟𝑒𝑛) ; (25) 

Where ξ is a number smaller than one. 

 

Step 5: Competition of the Imperialists 

In this step, the imperialists compete to 

get each other colonies. For this reason, the 

strongest empire takes the weakest colony of 

the weakest empire under his/her control. The 

power of each empire is normalized with 

respect to its total cost relative to other 

empires as shown below. 

 

𝑁. 𝑇𝐶𝑛 = 𝑇𝐶𝑛 − 𝑚𝑎𝑥𝑖{𝑇𝐶𝑖}       ;       (26) 

 

Step 6: Elimination powerless Empires 

If an empire loses all its colonies, it will 

be eliminated and competition between other 

empires will continue.  

 

Stopping Criteria 

 If the stopping condition is not met 

(remaining only one empire in the world), 

return to Step 2 and continue the algorithm 

with new empires. Therefore, the flowchart 

of the algorithm used in this paper is shown 

in Figure 4. 



A New Multi-Objective Inventory-Routing Problem by an Imperialist… 

International Journal of Transportation Engineering,  

Vol.8/ No.1/ (29) Summer 2020 

11 

Figure 4. Flowchart of the proposed MOICA 

 

3.3   Epsilon constraint method 

The epsilon constraint (i.e., -constraint) 

method is one of the best-known methods for 

solve MOPs. In this method, one of the 

objective functions must be considered as the 

main objective function (randomly) and other 

objective functions must be converted to 

model constraints [Mavrotas, 2009]. For more 

explanation, consider the following two 

functions: 

The -constraint method is also one of the 

more common methods used in obtaining the 

Pareto frontier, for which one of the objective 

functions is considered as the main objective 

function, and all other functions are limited 

with the allowable ɛj. ɛj may be subjected to 

change in order to generate Pareto solutions. 

A description of the epsilon-constraint method 

can be found below: Suppose that the 

objective of simultaneously maximizing two 

objective functions f1 and f2, is as follows: 

Where, S is the problem solution space.  

 
According to the Epsilon constraint method, 

firstly, each of these two problems will be 

solved separately, and an optimal solution of 

each problem will be found while taking all 

limits and constraints into account. 

Calculating the values of each objective 

function for an optimal solution of the other 

objective functions will result in the Nadir 

values of each objective function, as follows: 

 
Where, f* indicates the optimal solutions 

separately obtained for each objective function.  

Next, starting from one of these solutions, 

Pareto solutions can be obtained using an 

iterative algorithm. Suppose that the first 

solution (X1) is selected as a starting point. In 

this case, the following mathematical 
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programming (29) will be solved to obtain the 

first Pareto solution. 

 
The purpose of solving this problem is to 

obtain the best worse answer and the lowest 

decline in the optimal solution objective 

function f1
*(X1) for f1, such that a better answer 

can be achieved for f2. Supposing that this 

answer will be called X3, the next step of the 

algorithm will be to solve the following 

mathematical programming: 

This procedure will continue until no worse 

solution can be found for f1 to cause an 

improvement in f2. The last solution is the 

answer that provides the best value for f2 (i.e., 

point X2). In this method, each of the initial 

solutions that lead to the optimization of one 

of the objective functions may be considered 

as the starting point. This selection is 

completely optional and does not impact the 

obtained Pareto points. 

Finally, the following steps are necessary to 

apply the proposed ε-constraint method: 

 Create the payoff table. To do this, 

optimize each objective function 

individually, and calculate the value of 

other objective functions at this optimal 

point. For each objective function, call the 

interval between the ideal value and the 

worst value (nadir value. In cases where 

finding nadir value is not straightforward, 

generate the payoff table with a 

lexicographic method.  

 Choose one of the objective functions 

(fj(x)) as the main objective function to 

be optimized, and transform other 

functions into constraints. 

 Solve the mathematical model as 

provided in Equation (30). In this model, 

ei is the nadir value of the objective 

function. 

 

3.4   Measuring metrics 

In this section, we introduce the main 

measuring metrics used in the proposed meta-

heuristic algorithms. 

 Number of Pareto solutions (NP): This 

criterion indicates the number of Pareto 

solutions obtained by each algorithm. 

According to this index, a higher number 

of Pareto solutions are associated with a 

higher algorithm quality.  

 Spacing metric (SM): This criterion 

measures the uniformity of non-

dominated solutions distribution within 

solution space, and can be defined by: 

𝑆 = √
1

𝑛 − 1
 ∑(�̅� − 𝑑𝑖)

2 ;  𝑑𝑖

𝑛

𝑖=1

= 𝑚𝑖𝑛𝑗≠𝑖( ∑ |𝑓𝑖
𝑚 − 𝑓𝑗

𝑚|)

𝑀

𝑚=1

 

Where �̅� stands for the average di. It is 

evident that the lower the spacing metric 

index, the better the algorithm. 

 Diversity Metric (DM): This criterion 

evaluates the diversity and distribution of 

Pareto solutions, and is defined by: 

𝐷 = [∑ max (‖𝑥�̂�  −  𝑦�̂�‖

𝑛

𝑖=1

]

2

; (32) 

Where ‖𝑥�̂�  −  𝑦�̂�‖ presents the Euclidean 

distance between two adjacent solutions 

𝑥�̂� and 𝑦�̂� on the optimal boundary. It is also 

clear that a higher DM index is preferable. 

 Index of Mean Ideal Distance (MID): This 

criterion measures the average distance of 

Pareto solutions from the origin and is 

preferred to be as little as possible. In this 

equation, number OF indicates the 
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number of solutions, g stands for the 

targets and sol represents the solutions. 

𝑀𝐼𝐷 = ∑ √ ∑ 𝐹𝑠𝑜𝑙.𝑔
2

𝑛𝑢𝑚𝑏𝑒𝑟 𝑂𝐹

𝑔=1

𝑛

𝑠𝑜𝑙=1

 ;   (33) 

3.5   Parameters setting  

The performance of the meta-heuristic 

algorithms is usually sensitive to the settings 

of the parameters that can influence the search 

behavior. In this section, the parameters of the 

model are explained. For this purpose, we use 

the Taguchi method that is one of the most 

powerful statistical methods used to set 

parameters. 

 

3.5.1    Proposed MOICA 

Table 2 shows to tune six parameters, namely 

the number of countries, number of 

imperialists, number of iterations, assimilation 

coefficient, assimilation angle coefficient and 

alpha coefficient used in three levels. Thus, 

the number of the selected factors, analysis 

levels, and standard orthogonal table L27 

provided by the Taguchi method are chosen 

for this study (see Figures 5). The final results 

are obtained through a procedure similar to 

that of the previous algorithm as shown in 

Table 3. 

 

 

 

 

 

Table 2. Parameters values at different levels of the proposed algorithm 
Level 

Parameter 
3 (High) 2 (Medium) 1 (Low) 

100 50 20 Number of countries (NC) 

10 7 5 Number of imperialists (NI) 

150 100 50 Number of iterations (I) 

3 2 1.5 Assimilation coefficient (β) 

π/4 0.5 0.1 Assimilation angle coefficient (γ) 

0.1 0.075 0.05 Alpha coefficient (α) 
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Table 3. Levels and amounts results of parameters for the MOICA 

Parameters 

 
Alpha 

coefficient 

(α) 

Assimilation 

angle 

coefficient (γ) 

Assimilation 

coefficient (β) 

Number of 

iterations 

Number of 

imperialists 

Number of 

countries 

3 2 2 2 1 2 Level 

0.1 0.5 2 100 5 50 Amount 

Figure 5. Main Effects plot for means and Main effect plot for S/N ratios (for the MOICA) 

 

4. Discussion 
In this section, the computational results 

derived from the model presented in this 

paper. Therefore, solutions of the problems 

are carried out in small and large sizes using 

the ε-constraint method. Furthermore, in 

order to validate the proposed meta-heuristic 

algorithm, the results obtained from the ε-

constraint method are compared to those 

obtained from the proposed MOICA that 

seen in next section. 

The problems and solutions are carried out on 

a personal computer with an Intel Core i5 

processor 2.4 GHz and 4GB of internal 

memory, using GAMS and MATLAB 

software. 

4.1 Creating sample problems 

The sample problems are accidentally created 

in two large and small sizes. To do so, twenty 

five problems are created, among which  

 

 

fifteen problems are in small to medium sizes 

and ten problems are in large sizes.  

 

To distinguish these groups, the time duration 

for solving the problem by the ε-constraint 

method is employed so that those problems 

which can be solved less than 30 minutes are 

categorized in the small-size group, whereas 

those that can be solved within maximum 

three hours are classified as the large size 

group. In addition, a method of coding 

representation including the number of 

customers, number of products, number of 

vehicles and number of planning periods is 

used to create the sample problems. Table 4 

represents the values of the parameters of the 

problem. 
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Table 4. Values of problem parameters 

Problem 

parameter 

Parameter 

distribution 

U & W ~ Uniform (3,50) P ~ U (2,15) 

V ~ U (2,20) T ~ U (2,15) 

Du & Dw ~ U (20,60) γ ~ U (0.1,0.9) 

Cf ~ U (200,400) Cv ~ U (100,300) 

C ~ U (60,100) Y ~ U (30,60) 

S ~ U (20,70) c ~ U (20,70) 

Q ~ U (1000,2000) q ~ U (0.7,1.4) 

4.2   Validation 

In order to validate the model, we solve and 

analyze the small problem of the model with 

the corresponding methods. 

For this purpose, we will consider the sample 

of problem P01. That is a problem with U=3, 

W=3, V=3, P=2, T=2. In other words, out of 

6 customer sets, 3 customers went for the 

inhaul, and 3 other customers were 

considered for the backhaul trip. 

In the following, the values for each 

parameters are produced according to the 

following tables. 

 

Table 5. Parameter values for example 

test problem 
Du Dw 

T=1 T=2 T=1 T=2 

57 31 59 59 25 52 21 47 

45 42 26 39 37 59 54 51 

23 59 59 52 57 46 58 50 

Cf Cv Y 

T=1 T=2 T=1 T=2 T=1 T=2 

2780 3410 109 239 56 35 

2310 2060 119 163 58 42 

2340 2550 265 290 60 34 

    56 30 

    54 59 

    45 39 

Given the above parameters, we solve the 

model. So, the output of the model is based 

on the Pareto's solutions as follows: 

 

 

Table 6. Final Output (for P01 test problem) 

Pareto 1 
T=1 0 0 1 3 2 5 6 4 Z1=5617 

T=2 0 2 3 1 5 6 0 0 Z2=5.3 

Pareto 2 
T=1 0 0 1 3 2 5 4 6 Z1=5734 

T=2 0 2 3 6 0 1 5 4 Z2=4.9 

Pareto 3 
T=1 0 0 1 3 2 5 4 6 Z1=6002 

T=2 2 1 3 6 5 0 0 0 Z2=4.3 

Pareto 4 
T=1 0 0 1 3 2 5 4 6 Z1=6493 

T=2 1 2 3 6 5 0 0 0 Z2=3.7 

Pareto 5 
T=1 1 2 0 0 3 6 4 5 Z1=6657 

T=2 0 3 2 1 0 5 4 6 Z2=3.6 

For further analysis, we consider the Pareto 

3, which seems best Pareto solution. 

Figures 6 and 7 show that in this optimal 

Pareto solution, vehicles start moving from 

Depot, and after going through the route and 

sending the goods to inhaul customers, and 

delivery of goods from the backhaul 

customers, return to Depot. It is also quite 

obvious that first inhaul customers are 

served. 



Rahmat Arab, Seyed Farid Ghaderi, Reza Tavakkoli-Moghaddam 

International Journal of Transportation Engineering,  

Vol. 8/ No.1/ (29) Summer 2020 

16 

 
Figure 6. Optimal solution path for the 

problem (T=1) 

 
Figure 7. Optimal solution path for the 

problem (T=2) 

 

4.3   Sample problem results 

In this section, we compare the ε-constraint 

method with the proposed MOICA in solving 

the model. 

 

4.3.1 Effectiveness of MOICA vs. Epsilon 

constraint in small and medium-size problems 

In this subsection, 15 small and medium-size 

problems are generated to compare the 

proposed MOICA with an efficient Pareto set 

obtained by GAMS software using the ε-

constraint algorithm. Table 7 demonstrates 

the related results. In this table, a maximum 

of five Pareto solutions is considered. 

 In the ε-constraint method, the number of 

Pareto solution is considered to be its input 

but in the meta-heuristic algorithm, we record 

a maximum of five points of selective Pareto 

solutions. Also, the computational time of 

each algorithm is shown in this table. As can 

be seen from this table, computational time of 

the MOICA is much less time than ε-

constraint method (about 12.3%). 

 
 

 

 

 

 

 

 

Table 7. Solving the proposed model for small- and medium-sized problems 

MOICA ε-constraint 
Prob. 

(U/W/P/V/T) 
Time 

(s) 
Pareto solution 

Time 

(s) 
Pareto solution 

14 
(5617,5.3), (5734,4.9), (6002,4.3), 

(6493,3.7), (6657,3.6) 
145 

(5295,5.4), (5431,4.9), (5888,4.2), 

(6254,3.6), (6581,3.5) 

P01 

(3/3/2/3/2) 

16 
(10702,11.7), (11040,11.2), 

(11309,10.5), (11874,9.8), (11933,9.2) 
157 

(9894,11.5), (10065,11.3), 

(11551,10.5), (11430,9.6), (11523,8.9) 

P02 

(4/3/3/2/3) 

24 

(33213,19), (35228,18.5), 

(37312,17.8), (41198,17.1), 

(45765,16.9) 

250 

(30643,18.2), (33185,16.9), 

(36482,17.4), (38806,17.1), 

(44612,16.2) 

P03 

(5/5/3/4/4) 

22 

(25361,14.2), (29743,13.3), 

(32505,12.5), (36733,11.9), 

(39886,11) 

236 

(24113,13.7), (27761,13.3), 

(30631,12.1), (35006,11.5), 

(38808,10.6) 

P04 

(6/4/4/3/3) 

31 

(35549,25.5), (36498,23.7), 

(41501,20.2), (44664,19.9), 

(47357,18.6) 

333 

(32683,25.3), (33471,24), 

(38741,21.1), (42959,20.1), 

(44508,18.6) 

P05 

(7/5/4/3/4) 

32 
(60248,25.3), (61164,25.2), 

(63816,22.8), (66425,22) 
362 

(53850,27.2), (55843,25.7), 

(58371,23.1), (60107,22.3), 

(63881,21.4) 

P06 

(8/6/5/4/4) 

42 

(76426,46.4), (79487,37.1), 

(83689,36.3), (90927,35.2), 

(98995,34.8) 

425 

(70613,45.4), (76531,40.2), 

(81152,36.5), (85578,34.8), 

(93162,33.9) 

P07 

(8/7/5/4/5) 
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63 

(100649,45.4), (109840,41), 

(118204,38.6), (126368,38.4), 

(134751,37.5) 

611 

(91324,43.6), (97187,41.6), 

(110438,38.7), (121906,37.2), 

(128613,35.9) 

P08 

(9/8/6/5/5) 

70 

(143589,59.9), (158295,53.6), 

(165854,53.6), (177701,53.3), 

(185063,51.6) 

704 

(131629,56.2), (148734,52), 

(160537,51.1), (168784,49.9), 

(177908,49.5) 

P09 

(9/9/6/5/6) 

106 

(252184,87.9), (263691,85.5), 

(276882,82.6), (295509,86.4), 

(316447,82.8) 

989 

(221613,85.3), (245612,84.2), 

(263907,83), (278816,82.1), 

(297508,78.8) 

P10 

 (11/11/8/6/7) 

128 

(333306,115), (345816,110.1), 

(352930,108.5), (360857,107), 

(380023,105) 

1116 

(313091,107.3), (320813,105.1), 

(328718,101.7), (340086,100.6), 

(358852,98.5) 

P11 

 (12/11/8/8/8) 

155 

(367481,136.9),(377518,124.7), 

(384402,117.7),(398467,110.5), 

(409830,109.7) 

1235 

(324700,124.5), (348851,117.2), 

(367565,111.2), (386064,108.3), 

(392226, 105.1) 

P12 

 (13/11/9/9/8) 

207 

(388391,132.8),(402951,129.6), 

(418665,123.3),(426638,119.9), 

(433286,114.2) 

1436 

(334872,125.3), (367808,120.5), 

(388530,116.5), (404373,112), 

(425771,107.6) 

P13 

 (14/12/9/8/8) 

228 

(422522,126.3),(436953,124), 

(438356,122.4),(446581,119.6), 

(454746,113.8) 

1597 

(359540,120.5), (377802,117.5), 

(394736,113.3), (418909,110.6), 

(437746,105.8) 

P14 

(14/13/9/9/8) 

258 

(525264,168),(548901,158), 

(562735,154.7),(579249,152.9), 

(642145,149.3) 

1795 

(440872,156.1), (479083,153.4), 

(503612,149.7), (528867,145.2), 

(556911,137.6) 

P15 

 (15/14/10/9/9) 

1.55 

min 
 

12.65 

min 
 Mean 

To explain more about the ε-constraint 

method, the problem P07 is provided. 

Additionally, since objective functions 

appear in a linear form, and hence convex, the 

application of ε-constraint method seems to 

be a good choice. First, the optimization of 

each objective function is considered without 

regard to other objective functions. 

Therefore, an optimal solution of each 

objective function will be calculated 

individually. Next, the first objective 

function will be computed based on the 

optimal solution of the second objective 

function and vice versa to obtain the solutions 

of the beginning and ending of the Pareto 

front with GAMS software. The results are 

presented in Table 8. 
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Table 8. Calculation of objective functions for 

P07 (payoff table) 

Min Obj1=Transportation Min Obj2=Risk 

Obj1
*= f1(X1

*) =70613 Obj2
*= f2(X2

*) =33.9 

Obj1= f1(X2
*) =93162 Obj2= f2(X1

*) =45.4 

 

One of the functions is then adopted as the 

basis of movement (i.e., the second objective 

function) to obtain other Pareto points if 

exist. The basis objective function is moved 

away from its optimal value as much as an 

epsilon and then should be added to the 

problem as a constraint, and finally the 

problem has to be optimized based on another 

objective function. Now, the number of grid 

values is considered 8. Thus, the epsilon 

value is calculated by: 

𝜀 =
45.4 − 33.9

8 − 1
= 1.65 

Now, the following constraint is added to the 

problem: 

𝑀𝑖𝑛 𝑂𝑏𝑗2 = 𝑅𝑖𝑠𝑘 ≤ 45.4 − 1.65 

Then, the problem is optimized according to 

the first objective function. This will be 

repeated for the subsequent steps, and the 

solutions will also be recorded in each step 

until the problem is proved to be infeasible. 

Table 9 provides information on the results of 

the repetition of epsilon constraint method. 

Therefore, the Pareto solutions of this 

problem based on the ε-constraint method are 

as follows: (70613, 45.4), (76531, 40.2), 

(81152, 36.5), (85578, 34.8) and (93162, 

33.9) as shown in Table 7. 

 

 

Table 9. Epsilon's calculation table 

Efficiency Obj2 Obj1 Limitation Round 

Efficient 45.41 70613 45.4 1 

Efficient 40.23 76531 43.75 2 

- 40.23 76531 42.1 3 

- 40.23 76531 40.45 4 

Efficient 36.5 81152 38.8 5 

- 36.5 81152 37.15 6 

Efficient 34.82 85578 35.5 7 

Efficient 33.93 93162 33.9 8 

Finally, Figure 8 shows the Pareto diagram 

for two methods (for the sample problem 

P07). As can be seen, the Pareto solutions of 

the MOICA show good quality and are 

almost identical to those obtained using the ε-

constraint method. Moreover, as indicated in 

this figure, increased costs can reduce the 

total risk, whereas a rise in the total risk will 

minimize system costs, which indicates the 

conflict of objective functions and accounts 

for the use of multi-objective optimization 

methods. Moreover, as indicated in this 

figure, increased costs can reduce the total 

risk, whereas a rise in the total risk will 

minimize system costs, which indicates the 

conflict of objective functions and accounts 

for the use of multi-objective optimization 

methods. 
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The second results shown in Table 7 that we 

present the relative gap. It is necessary to 

mention that errors of the two algorithms 

regarding the optimal solution can be found 

with respect to objective functions that 

shown below. 

𝐺𝐴𝑃 =
𝑂𝐹 𝑀𝑂𝐼𝐶𝐴 − 𝑂𝐹𝐸𝑝𝑠𝑖𝑙𝑜𝑛

𝑂𝐹𝐸𝑝𝑠𝑖𝑙𝑜𝑛

                  (34) 

Where OFMOICA and OFEpsilon are the average 

objective value among the Pareto's solutions 

that provided by the proposed meta-heuristic 

algorithms and Epsilon for both objective 

functions (𝑍1
̅̅ ̅ and 𝑍2

̅̅ ̅).  

As can be seen in figure 9, with the increase 

in the dimensions of the model, the average 

gap is also rising. In other words, in small-

size problems, the distance between the 

solutions of the model based on these two 

methods is almost negligible and as the 

problem rises, the gap increases. 

   

 

4.3.2  Effectiveness of the MOICA vs. Epsilon 

constraint method in large-sized problems  

Finally, for large-size problems (with the 

computational time less than three hours for 

the ε-constraint 

method), we use multi-objective criteria for P16 to P25 test problems as shown in Table 10.  

Table 10. Solving the proposed model for large-size problems 

Prob. 

(U/W/P/V/T) 

Epsilon MOICA 

DM SM MID 
Time 

(min) 
DM SM MID 

Time 

(min) 

P16 

(16/16/12/9/9) 
55311 1.44 34.5 41.8 84757 0.82 14.9 5.45 

P17 

(18/18/13/11/10) 
46176 1.11 32.3 52.2 64190 0.79 17.4 8.16 

P18 

(20/20/12/9/8) 
69505 0.89 29.5 59.6 102503 0.67 10 7.64 

P19 

(22/23/10/11/11) 
77732 1.45 41.5 58.3 135810 0.72 27.3 8.68 

P20 

(25/25/11/11/10) 
86008 1.85 38.7 67.5 164620 1.16 21.4 10.75 

P21 

(30/28/10/12/10) 
82205 0.65 31 75.3 135772 0.29 33.6 11.81 

P22 

(30/30/10/15/10) 
79703 1.83 35.2 90.1 124087 0.9 16.9 13.58 

P23 

(35/32/11/15/10) 
58333 1.06 26.1 125.2 94211 0.72 22.6 17.13 

P24  

(40/35/10/16/12) 
104609 0.98 42.4 142.4 277824 0.66 17 20.05 

P25  

(45/45/12/20/12) 
131742 1.27 45.3 172.8 265438 0.64 21.6 22.65 

Mean 79132 1.25 35.7 88.5 144921 0.74 20.3 12.6 
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Figure 8. Pareto solutions of two mentioned algorithms for P07 problem 

Figure 9. Comparison of MOICA GAP than to Epsilon in mentioned test problems 

 

As can be seen in table 10, spacing metric 

reveals that the value of the MOICA 

algorithm is lower than that of the ε-

constraint method, thereby proving the 

superiority of this algorithm. The diversity 

metric, on the other hand, confirms that the 

proposed MOICA is more extensive in Pareto 

solutions than the ε-constraint method. 

Finally, the MID metric also points to the 

higher efficiency of the MOICA due to its 

lower value for this algorithm than the ε-

constraint method.  

Also, table 11 represents the results of the 

statistical analysis of the metrics of multi-

objective problems. To do so, the following 

statistical assumption is considered: 

{
𝐻0 = �̅� = 0

𝐻1 = �̅� ≠ 0
     

Where  �̅� = 𝑑𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 − 𝑑𝐸𝑝𝑠𝑖𝑙𝑜𝑛 and the 

values of d account for multi-objective 

metrics. It is noteworthy that since the lower 

values of MID and SM metrics imply better 

performance of the algorithm, the alternative 

hypothesis of a problem is changed �̅� < 0. 

This hypothesis is tested using t-test at the 

97.5% level of significance. Additionally, the 

Kolmogorov-Smirnov (K-S) test is also 
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employed to test the collected data for 

normality, because t-test and ANOVA 

methods assume that the sample data follow 

a normal distribution. In the K-S test, if the p-

value is greater than 0.05, then we can say 

that the data distribution is normal. This is 

shown in Figure 10. 

 
Figure 10. Normal probability plot for the 

statistical analysis for the DM metric 

 

As an example, let us consider the case of the 

DM metric. The value of di, which is the 

difference of the values of this metric for the 

ε-constraint method and the proposed 

MOICA, is documented and then the mean 

and variance of the numbers will be 

calculated. Finally, the test statistic 

calculation follows the following procedure: 

𝑡 =
�̅� − 0

𝑆
√𝑛

⁄
=

65789 − 0

50062
√10

⁄
= 4.155 

Finally, the obtained result will be 

compared with tα,9 at the 97.5% level of 

significance. Since 4.155>2.262, the null 

hypothesis is rejected, while alternative 

hypothesis is accepted. That is, 

𝑑𝑀𝑂𝐼𝐶𝐴 − 𝑑𝐸𝑝𝑠𝑖𝑙𝑜𝑛 > 0. 

 

Table 11. Summary of the statistical analysis 

results   

 DM SM MID Time 

Epsilon 

vs 

MOICA 

Pk-s =  

0.051 

Pk-s = 

0.081 

Pk-s = 

0.085 

Pk-s= 

0.144 

t= 4.15 t= 6.98 t= 5.58 t= 6.30 

Pvalue= 

0.001* 

Pvalue 

≃ 0* 

Pvalue  

≃ 0* 

Pvalue  

≃ 0* 

 

As can be seen, the results prove the 

superiority of the MOICA to the ε-constraint 

method within all metrics because the 

corresponding p-value is smaller than 0.05.  

Figure 11 demonstrates the comparison of 

computational time among the mentioned 

methods. As can be seen in the ε-constraint 

method, as the number of the dimensions of 

the problem (particularly the number of 

customers and periods) increases, the 

computational time of problem enhances 

with a deeper slope, whereas it rises with a 

constant slope in the proposed MOICA. 

Therefore, it is observed from Figure 9, the 

time interval between two algorithms with 

greater intensity is increasing with respect to 

the dimensions of the problem. Moreover, the 

average time for solving a large-sized 

problem using the ε-constraint method in this 

algorithm is 88.5 minutes, while this is 12.6 

min for the MOICA, which is approximately 
1

7
 times of the ε-constraint method. 
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Figure 11.  Comparison of the computational time for two algorithms in all test problems 
 

 

 

 

4.4   Sensitivity Analysis 

In this section, sensitivity analysis has been 

used to evaluate the effect of changes in 

model parameters on the values of objective 

functions. 

For this purpose, we consider some important 

parameters of the model (du, dw, yi, qp, Ci), 

and by changing them, we obtain the changes 

of the objective functions.   

Similarly, this analysis can be done for other 

parameters of this model.  

The method of sensitivity analysis is that all 

the parameters of the problem, except for the 

parameter under consideration, remain 

constant and the results of this analysis are 

examined by making changes in the 

parameter values selected for the sensitivity 

analysis. 

The results of this sensitivity analysis are 

shown in Figures 12 and 13. 

 

 
Figure 12. Sensitivity analysis for P01 (Objective 

Function Z1) 
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Figure 13. Sensitivity analysis for P01 (Objective 

Function Z2) 

 

 From the above figures, there are several 

results that are referred to below: 

1. By increasing the value of the parameter 

du and dw to 60%, the objective function 

Z1 increases and the Z2 is reduced. Only 

this does not happen when the parameter 

change is 15%. 

2. The change of the Q parameter on the 

objective functions has not produced a 

definite effect. In other words, with a 

change of 30% in this parameter, the 

objective function Z1, to the maximum 

and with a change of 45% in this 

parameter, the second objective function 

Z2 reaches its lowest value. 

3. By increasing the value of the parameter 

yi, the value of the objective function Z1 

increases (except in 15%) and the value 

of the second objective function Z2 is 

reduced (except in 30%). 

4. By increasing the parameter value of cv, 

the objective function Z1 is obviously 

increased, but the second OF Z2 does not 

have a consistent effect. 

So, what follows from this sensitivity 

analysis is that roughly the process of 

changing the objective functions are 

inverse. This can also show some degree of 

confliction in the objective functions. 

4.5 Managerial implications 

This paper present a new bi-objective 

inventory-routing problem according to some 

real cases. In this model, transportation risk 

has been added to the model. The risk of 

transportation is determined according to 

each route and type of vehicle. Experts' 

opinions can also be effective in calculating 

risk factors. Furthermore, usually researchers 

aggregate inventory costs and transportation 

risk and formulate them as a single objective 

function. But in non-cooperative real life 

cases, inventory holding costs are paid by 

retailers while the transportation related costs 

are paid by the distributer. In this paper, we 

separate these two cost elements and 

introduce a bi-objective IRP formulation in 

which the first objective will minimize the 

inventory holding cost and the second one 

will minimize the transportation risk. To 

demonstrate the conflict between the 

proposed objectives functions, the Pareto 

efficient frontiers of the test problem P07 are 

shown in Figure 8. 

Simplicity of implementation in real 

cases, is another essential benefits of the 

proposed model. For example, considering 

the environmental aspects (e.g., minimization 

of air pollution) to the presented model, 

applying the model in a real-case industry 

(e.g., gas, petroleum and transportation of 

hazardous materials), developing any exact 

solution method (e.g., branch-and-price), and 

solving the model under uncertainty by a 

fuzzy method or robust optimization can be 

taken into account for future studies. 

 

5.  Conclusion 
In this paper, a novel mathematical model 

and solution approach for bi-objective 

inventory routing problem with 

transportation risk was presented. Then, a 

linearization approach was applied to make 

the model linear. In non-cooperative real life 

cases, inventory-holding cost is paid by 
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retailers while the transportation related risk 

are paid by the distributer. In this paper, 

introduced a bi-objective IRP with backhaul 

formulation; the first objective function 

included the system inventory cost and the 

second objective function minimized 

transportation risks on routes taken by 

vehicles. Also, two algorithms, namely 

MOICA and ε-constraint method, were 

developed to solve the presented model. For 

this purpose, 25 random test problem were 

produced with different sizes (small, medium 

and large size), and the model was solved 

based on the mentioned algorithms. 

As discussed before, the ε-constraint method 

is an exact method, but it cannot solve large-

size problems within a reasonable time. To 

overcome this problem, we proposed and 

used the MOICA to solve the model and then 

we compared the results of the model 

solution with the Epsilon constraint method. 

It is worth noting that in small-size problems, 

the method of the MOICA was almost 

accurate and produced close-to-optimal 

solutions. But with increasing size of the 

problem, the Epsilon method was not able to 

answer in a short time. But, on the other hand, 

the method MOICA provided a good solution 

in an appropriate time. As for large-size 

problems, the Epsilon method was answered 

for about 1.5 hours, but the MOICA method 

was answered within 12 minutes. Of course, 

to clarify the above, we present a figure 9 that 

makes a comparison of the solutions obtained 

from the two methods. We also plotted the 

Pareto solutions of the two methods for the 

P07 problem, and measured the efficiency of 

the MOICA algorithm based on the criteria of 

multi-objective problems. In terms of these 

criteria, the MOICA method is superior to 

Epsilon's method in large-sized issues, which 

indicates that the proposed algorithm is much 

efficient. 

For future research, we can use other 

methodological methods such as NSGA-II, 

MOPSO and … to compare the results. Also, 

other exact methods such as the Benders 

decomposition can be used.  
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Appendix 

Suppose a distribution system with four 

customers and a central warehouse for 

distributing products. The capacity of the 

warehouse for each customer is 50 units, for 

which the shortage and maintenance costs 

based on the ending inventory are presented 

in table 1. 

 

Table 1. Cost information for instance example 

Costs 
Customer 

1 2 3 4 

Maintenance Cost (Dollars per unit in each per period) 0.09 0.09 0.13 0.1 

Shortage Cost (Dollars per unit in each per period) 2.8 3.4 2.7 3.2 

 

The planning is set for a four period, 

during each period two vehicles, each with 

100 products, are available. The fixed cost of 

using each vehicle is $10. Table 2 and figure 

1 indicate the distribution system and 

demand system of each customer for each 

period, respectively. 

Table 2. Customer demand in each period 

Period 
Customer 

1 2 3 4 

1 5 34 38 35 

2 15 27 26 42 

3 12 30 20 39 

4 17 33 25 40 

Sum 49 124 109 156 

 

 
Figure 1. A sample of a distribution network with four customers and a warehouse (depot) 

 

If the above problem is set to be solved in 

the form of four individual vehicle routing 

problem, then the sum of transportation costs 

will be $708 (=4*(157+20))and the inventory 

costs will be naturally equal to zero.  

A possible solution for the proposed problem 

can be found in tables 3, 4 and 5. Tables 6 and 

7 represent the cost of this solution. 
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Table 3. Amounts of delivered goods   
Table 4. Ending inventory status 

Period 
Customer  

 

Period 
Customer 

1 2 3 4 1 2 3 4 

1 0 61 64 35 1 -5 27 26 0 

2 49 0 0 81 2 29 0 0 39 

3 0 63 45 0 3 17 33 25 0 

4 0 0 0 40 4 0 0 0 0 

Sum 49 124 109 156 Inventory 46 60 51 39 

     Shortage 5 0 0 0 

 

Table 5. Routs selection in each of the periods 

Period 1 Period 2 Period 3 Period 4 

    
 

Table 6. Calculation of inventory costs resulting from the sample feasible solution  

Costs 
Customer 

Sum 
1 2 3 4 

Maintenance Cost 46*0.09=4.14 60*0.09=5.4 51*0.13=6.63 39*0.1=3.9 20.07 

Shortage Cost 5*2.8=14 0 0 0 14 

Sum 18.14 5.4 6.63 3.9 34.07 
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Table 7. Calculation of transportation costs resulting from the sample feasible solution 

Costs 
Customer 

Sum 
1 2 3 4 

Fixed transportation cost  20 20 20 10 70 

Route Cost 58+75=133 58+60=118 64+60=124 60 435 

Sum 18.14 5.4 6.63 3.9 505 

Therefore, the total costs of the possible 

solution is $539.07 (=505+34.07), which 

corresponds to 76.1% of the solution of the 

problem solved in terms of four individual 

vehicle routing problems.  

The optimal solution for the number of 

delivered goods is presented in table 8. The 

costs incurred in the optimal condition is 

$445.31 (424+21.31), which corresponds to 

62.9% of the solution of the problem solved 

in terms of four individual vehicle routing 

problems. In other words, using inventory 

routing concept can save the costs up to 

37.1%. The possible saving resulting from 

using this concept greatly depends on the 

magnitude of the transportation costs 

compared to scarcity and maintenance cost. 

 

Table 8. The optimal amount of delivered goods 

Period 
Customer 

1 2 3 4 

1 20 61 64 35 

2 0 0 0 66 

3 29 63 45 55 

4 0 0 0 0 

Sum 49 124 109 156 

   

 

 


