
182

182

337 International Journal of Transpotation Engineering,
 Vol.1, No.4, Spring 2014

such 1DB-IPPs, an algorithm named EDS

for enumerating all dominant solutions and

investigates its functionality. As a case-study

the algorithm is then applied on one of NDP

formulations in transportation planning and

the results are reported and compared with the

B&B algorithm. The results experimentally

suggest that the EDS algorithm could out-

perform the B&B algorithm in certain cases,

whereas the overall performance of the B&B

algorithm is notably faster.

The rest of this paper is structured as follows:

In section 2 the EDS algorithm is introduced

and its functionality is formally discussed via

some lemmas. A NDP formulation, as a case

for 1DB-IPPs is introduced in section 3 and

detailed experimental results are reported.

The paper is concluded and remarks for fur-

ther research are added in section 4.

2. EDS Algorithm
Suppose that k items are to be selected each

with a non-negative selection cost and a pre-

defined budget is available for selection. In

such circumstances, the EDS algorithm is go-

ing to enumerate dominant solutions, as pre-

viously defined. Before the formal presenta-

tion of the EDS algorithm, some prerequisite

points must be highlighted.

• The EDS algorithm holds a k-length binary

number as the current string which stands for

a dominant solution. For each string, there

will be a remaining budget which is defined as

the available budget in the algorithm.

• The functionality of the EDS algorithm is

based on the increasing order of items accord-

ing to their costs. Items are therefore sorted

initially in an increasing order from right to

left.

• The EDS algorithm, at each iteration, would

fall into one of the three states defined in the

algorithm as current states:

• state 0: The current string is a budget-wise

feasible, but non-dominant solution,

• state 1: The current string is a dominant solu-

tion,

• state 2: The current string is a budget-wise

infeasible solution.

• To perform a proper operation the EDS algo-

rithm would need to specify the current state.

This is done simply by checking the current

string:

• If the available budget ≥ 0 and the rightmost

‘0’ can be changed to ‘1’ in budget constraint,

the state is 0,

• If the available budget ≥ 0 and the rightmost

value is ‘1’, or is ‘0’ but cannot be changed to

‘1’ in budget constraint, the state is 1,

• If the available budget < 0, the state is 2.

Now the pseudo-code of the EDS algorithm

can be written:

Begin;

// definitions and initialization:

- define the available budget and set it to B;

- define a string of binary values and set its

values to ‘0’;

- sort items in an increasing order from right

Amirali Zarrinmehr, Yousef Shafahi

338International Journal of Transpotation Engineering,
Vol.1, No.4, Spring 2014

to left according to their costs;

// iterations:

While iterations are not stopped

- specify the current state;

if the current state = 0

- while holding the available budget ≥ 0,

change the rightmost ‘0’ to ‘1’ and update the

available budget;

else if the current state = 1

- enumerate the current state as a dominant

solution;

- change the rightmost sequence of ‘1’s to ‘0’,

and update the available budget;

- if the next rightmost ‘0’ is existent, change

it to ‘1’ and update the available budget; else

stop the iterations;

else // current state = 2

- if the second rightmost ‘1’ is existent, change

the two rightmost ‘1’s to ‘0’ and update the

available budget; else stop the iterations;

- if the next rightmost ‘0’ is existent, change

it to ‘1’ and update the available budget; else

stop the iterations;	

endwhile

End;

To observe the functionality of the EDS algo-

rithm, a simple example is presented in Table

1. In this example, a total budget of 60 is as-

sumed to be at hand and there are eight items

for selection, with costs: 8, 16, 28, 29, 32, 40,

45 and 58. Table 1 shows the way the itera-

tions are performed by the EDS algorithm.

The sequence of states in this table suggests

a functionality diagram for the algorithm

which is shown in Figure 1. According to this

diagram, the algorithm starts with the state 0

from which it necessarily moves to state 1. In

either states of 1 or 2, the algorithm may move

to any of the three states as well as the end of

the iterations. This functionality is discussed

further in the next subsections.

2.1 Notes about the EDS Algorithm

To formally discuss the functionality of the

EDS algorithm, three preliminary lemmas are

provided. These lemmas support the diagram

shown in Figure 1 and also indicate that nei-

ther of dominant solutions is ignored by the

algorithm. Note that in this subsection, wher-

ever binary strings are compared, the corre-

sponding binary numbers are considered.

Lemma 1: If the current state is 1, the EDS

algorithm moves from the current string, S1,

to a new string, S2, that S1<S2. If the algorithm

does not stop, the new state can be 0, 1, or 2

(as shown in Figure 1) and no dominant solu-

tion like S that S1<S<S2 is ignored.

Proof: The current string could be shown like

S1=CBA (e.g. S1=001011011100) in which:

- A is the sub-string of rightmost successive

elements of ‘0’ (e.g. A=00),

- B is the sub-string of the rightmost succes-

sive elements of ‘1’ (e.g. B=111),

- C is the sub-string which immediately fol-

lows B (e.g. C=0010110).

Assume that C≠Ø. Then, according to the

pseudo-code, all elements of ‘1’ in B change

Enumeration of Dominant Solutions An Application in Transport Network Design

339 International Journal of Transpotation Engineering,
 Vol.1, No.4, Spring 2014

Table 1. An example for the EDS algorithm functionality

Figure 1. The Functionality Diagram of the EDS Algorithm

End

Begin

State 2 State 1

State 0

Amirali Zarrinmehr, Yousef Shafahi

340International Journal of Transpotation Engineering,
Vol.1, No.4, Spring 2014

into ‘0’ and the rightmost element of C,

which is necessarily ‘0’, changes into ‘1’ (e.g.

S2=001011100000). The next state would be

either ‘0’, ‘1’ or ‘2’ with respect to the costs

of the changed elements. The emerging string,

S2, clearly as a binary value has a greater val-

ue than S1.

For any string like S that S1<S<S2 (e.g.

S=001011011101), S differs with S1 but only

in some elements of A that are changed into

‘1’. The string S, as a result, cannot be a domi-

nant solution, because this contradicts the ini-

tial assumption that S1 is a dominant solution.

Therefore there is no dominant solution like S

that the EDS algorithm ignores in the transi-

tion from S1 to S2.

Also if C=Ø, the algorithm stops and a similar

argument would prove that no dominant solu-

tion like S such that S>S1 is ignored by the

algorithm.

Lemma 2: If the current state is 2, the EDS

algorithm moves from the current string, S1,

to a new string, S2, that S1<S2. If the algorithm

does not stop, the new state can be 0, 1, or 2

(as shown in Figure 1) and no dominant solu-

tion like S that S1<S<S2 is ignored.

Proof: According to the pseudo-code, if the

current string, S1, is comprised of only one el-

ement of ‘1’, the algorithm stops and because

the current string has been an infeasible solu-

tion, neither of greather strings would be fea-

sible.

Assume that there exist at least two ele-

ments of ‘1’ in the current string, (e.g.

S1=010011100010) and that B is the sub-string

of successive elements of ‘1’ starting from the

second rightmost ‘1’ (e.g. B=111). The current

string, S1, could now be written like CBA in

which:

- A is the sub-string of rightmost successive

elements before the second rightmost ‘1’ (e.g.

A=00010),

- C is the sub-string immediately following B

at the left side (e.g. C=0100).

Suppose that C≠Ø. Then, according to the

pseudo-code, all elements of B and A are set

into ‘0’ and the rightmost element of C, which

is necessarily ‘0’, is changed into ‘1’ (e.g.

S2=010100000000). Similar to the argument

for lemma 1, the new string, S2, is greater than

S1 and the new state would be either 0, 1 or 2.

The sub-string A in S_1 can further be decom-

posed like A_21A_1 in which:

- A1 is the sub-string of rightmost successive

elements of ‘0’ before the first ‘1’ (e.g. A1=0),

- 1 is an intermediate element of A, separating

the two sub-strings of A1 and A2,

- A2 is the sub-string of successive elements of

‘0’ between the first and second rightmost ‘1’s

of S1 (e.g. A2=000).

For binary strings like S that S1<S<S2 (e.g.

S=010011100011 or 010011101000), either

one of two cases might happen:

(a) Some elements of A1 are changed into ‘1’

and all elements at the left side of A1 are the

same as S1.

(b) Some elements of A2 are changed into ‘1’

and all elements at the left side of A2 are the

Enumeration of Dominant Solutions An Application in Transport Network Design

341 International Journal of Transpotation Engineering,
 Vol.1, No.4, Spring 2014

same as S1.

In both cases of (a) and (b), the corresponding

cost for S would be equal to or greater than

S1 which results in infeasibility of S (In case

(b) this is true due to the sorting of items ac-

cording to their costs, which was an initial as-

sumption). Therefore, all strings between S1

and S2 become infeasible and the EDS algo-

rithm does not ignore any dominant solution

in this transition.

Also, if C=Ø, the algorithm stops according

to the pseudo-code and a similar argument

shows that no dominant solution like S that

S>S1 is ignored.

Lemma 3: If the current state is 0, the EDS

algorithm moves from the current string, S1,

to a new string, S2, that S1<S2. The new state

will always be 1 (as shown in Figure 1) and

no dominant solution like S that S1<S<S2 is

ignored.

Proof: In order to prove this lemma, a suffi-

cient condition would be the following auxil-

iary lemma and thereafter, the lemma can be

easily proved using induction over states of 0.

Auxiliary lemma: If the current state is 0 and

the previous state has been either 1 or 2, the

EDS algorithm moves from the current string,

S1, to a new string, S2, that S1<S2. The new

state will always be 1 and no dominant solu-

tion like S that S1<S<S2 is ignored.

Proof of auxiliary lemma: Suppose

that the previous string has been S0 (e.g.

S0=001100111000) in either states of 1 or 2.

This string can be shown like BA in which:

- A is the sub-string of rightmost successive

elements including the rightmost elements of

‘1’ and ending at the subsequent element of

‘0’ (e.g. A=0111000),

- B is the sub-string immediately following A

at the left side (e.g. B = 00110).

According to the instructions related to states

1 and 2 in the pseudo-code, after the transition

from S0 to S1, all elements of A would become

‘0’ except the leftmost element which changes

into ‘1’ (e.g. . S1=001101000000). Then, while

the budget constraint is not violated, the algo-

rithm changes the rightmost elements of ‘0’

into ‘1’ (e.g. S1=001101001111). This clearly

can not result in changing all ‘0’ elements of

A into ‘1’, because it contradicts the assump-

tion that S0 (with some ‘0’ elements in A) is

a dominant solution. Therefore, in the new

string, S2, the sub-string A will have a struc-

ture like 1A2 A1 in which:

- A1 is the sub-string of rightmost successive

elements of ‘1’ (e.g. A1=1111),

- A2 is the sub-string of rightmost successive

elements of ‘0’ (e.g. A2=00),

	 1 is the leftmost element of A.

The string S2 is clearly greater than S1. It is

also a dominant solution, because the right-

most element of ‘0’ in A2 (and consequently

neither of the following elements of ‘0’ at the

left side) can be changed into ‘1’ while hold-

ing the feasibility constraint.

Moreover, for any string like S that S1<S<S2,

some elements of A2 should be ‘0’ and there-

fore, S can not be a dominant solution, be-

Amirali Zarrinmehr, Yousef Shafahi

342International Journal of Transpotation Engineering,
Vol.1, No.4, Spring 2014

cause this would contradict the previous argu-

ment that S2 is a dominant solution. Therefore,

the algorithm does not ignore any dominant

solutions in its transition form S1 to S2.

Lemmas 1 to 3 indicate that the EDS algo-

rithm traverses k-length binary numbers in an

increasing order. These numbers are clearly

finite. Hence, in order to prove that the EDS

algorithm enumerates all dominant solutions,

it is sufficient to prove the following corollary.

The proof is trivial by induction.

Corollary: At each iteration, all dominant

solutions with binary values smaller than the

current string have been enumerated by the

EDS algorithm.

2.2 A Rough Computational Analysis for

the EDS Algorithm

According to the pseudo-code of the EDS al-

gorithm, it is simple to see that:

• Operations related to current state 0, are per-

formed at most in O(k).

• Operations related to current state 1, are per-

formed at most in O(k).

• A sequence of operations related to current

state 2, can be performed computationally in

no more than O(k).

Therefore, regarding Figure 1, the generation

of each dominant solution takes place com-

putationally in at most C = O(3k). A more

accurate analysis, however, may be possible

for the EDS algorithm via amortized analysis

[Cormen et al, 2001]; nonetheless this rough

analysis leads to an interesting property for

the algorithm: Given that N is the total num-

ber of dominant solutions in a 1DB-IPP feasi-

ble space, the EDS algorithm enumerates all

dominant solutions in at most C*N compu-

tational cost, no matter what the size of the

search space is.

3. Case-study on NDP
This section briefly reviews a definition of

NDP as a 1DB-IPP in transportation planning:

NDP with fixed travel-time links. The B&B

algorithm as a traditional exact method to

tackle the problem is first overviewed. Next,

it is discussed how the EDS algorithm could

be applied to this problem. The section finally

compares the performances of the B&B algo-

rithm and the method developed in this paper,

namely the EDS algorithm.

3.1 ND with fixed travel-time links

Network design includes a variety of appli-

cable problems in transportation planning,

logistics, telecommunication, and production.

In this problem, usually the aim is to choose

arcs in a network to enable demand to flow be-

tween Origin-Destinations (ODs) at the low-

est system cost [Alba, 2005]. The complexity

of this problem stems from the combinatorial

number of alternative decisions to be selected

among. In transportation planning, network

design is known as a classical problem with

a bi-level structure which aims at choosing

the best subset of proposed projects (i.e. new

Enumeration of Dominant Solutions An Application in Transport Network Design

182

182

345 International Journal of Transpotation Engineering,
 Vol.1, No.4, Spring 2014

Amirali Zarrinmehr, Yousef Shafahi

Figure 2. Sioux-Falls network and projects configuration

Table 2. Definitions of projects in the Sioux-Falls network

346International Journal of Transpotation Engineering,
Vol.1, No.4, Spring 2014

Enumeration of Dominant Solutions An Application in Transport Network Design

Table 3. Detailed results of running the EDS and B&B algorithms

347 International Journal of Transpotation Engineering,
 Vol.1, No.4, Spring 2014

while the overall performance of the B&B al-

gorithm is notably faster, the EDS algorithm

outperforms the B&B algorithm for lower lev-

els of budget.

This paper investigated the performance of the

EDS algorithm on one 1DB-IPP in transporta-

tion planning via an experimental approach.

More experiments on other 1DB-IPPs as well

as theoretical study of the performance of the

algorithm would further extend the results of

this paper. The comparison of the proposed

algorithm with other methods in different

conditions can also be interesting for further

studies.

5. References
- Alba, E. (2005) “Parallel metaheuristics: A new class

of algorithms”, Wiley Series on Parallel and Distrib-

uted Computing.

- Angulo, E., Castillo, E., García-Ródenas, R. and

Sánchez-Vizcaíno, J. (2013) “A continuous bi-level

model for the expansion of highway networks”, Com-

puters and Operations Research, in press.

- Babazadeh, A., Poorzahedy, H. and Nikoosokhan, S.

(2011) “Application of particle swarm optimization

to transportation network design problem”, Journal of

King Saud University-Science, Vol. 23, No. 3, pp. 293-

300.

- Bar-Gera, H. (2011) “Transportation network test

problems”, Accessed September 19, http://www.bgu.

ac.il/~bargera/tntp/.

- Cormen, T. H., Leiserson, C.E., Rivest, R. L. and

Stein, C. (2011) “Introduction to algorithms”, Second

edition. Cambridge, Massachusetts: MIT press.

- Garey, M. R. and Johnson, D. S. (1979) “Computers

and intractability: a guide to the theory of NP-complete-

ness”, W. H. Freeman and Company, San Francisco.

- Grama, A.Y. and Kumar, V. (1993) “A survey of par-

allel search algorithms for discrete optimization prob-

lems”, ORSA Journal on Computing, Vol. 7, pp. 1-40.

- Ibaraki, T. (1976) “Theoretical comparisons of search

strategies in branch-and-bound algorithms”, Interna-

tional Journal of Computer & Information Sciences,

Amirali Zarrinmehr, Yousef Shafahi

Firure 3. Runtime curves for the EDS and B & B algorithms

348International Journal of Transpotation Engineering,
Vol.1, No.4, Spring 2014

Vol. 5, No. 4, pp. 315-44.

- Ochoa-Rosso, F. and Silva, A. (1969) “Optimum

project addition in urban transportation networks via

descriptive traffic assignment models”, Transportation

Systems Division, MIT.

- Pisinger, D. (1995) “Algorithms for knapsack prob-

lems”, Ph.D diss., Department of Computer Science,

University of Copenhagen.

- Poorzahedy, H. and Abulghasemi, F. (2005) “Applica-

tion of ant system to network design problem”, Trans-

port, Vol. 32, No. 3, pp. 251-273.

- Rust, J. (2006) “Dynamic programming”, New Pal-

grave Dictionary of Economics.

- Sheffi, Y. (1985) “Urban transportation networks:

Equilibrium analysis with mathematical programming

methods”, Prentice-Hall Englewood Cliffs, NJ.

- Vitins, B. J., and Axhausen, K. W. (2009) “Optimiza-

tion of large transport networks using the ant colony

heuristic”, Computer-Aided Civil and Infrastructural

Engineering Journal of ASCE, Vol. 24, No. 1, pp. 1-14.

- Vitins, B. J. and Axhausen, K. W. (2010) “Patterns and

grammars for transport network generation”, Proceed-

ings of 14 the Swiss Transport Research Conference.

- Yin, Y. (2000) “Genetic-algorithms-based approach

for bi-level programming models.” , Transportation

Engineering Journal of ASCE, Vol. 126, No. 2, pp. 115-

120.

Enumeration of Dominant Solutions An Application in Transport Network Design

