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such 1DB-IPPs, an algorithm named EDS 

for enumerating all dominant solutions and 

investigates its functionality. As a case-study 

the algorithm is then applied on one of NDP 

formulations in transportation planning and 

the results are reported and compared with the 

B&B algorithm. The results experimentally 

suggest that the EDS algorithm could out-

perform the B&B algorithm in certain cases, 

whereas the overall performance of the B&B 

algorithm is notably faster.

The rest of this paper is structured as follows: 

In section 2 the EDS algorithm is introduced 

and its functionality is formally discussed via 

some lemmas. A NDP formulation, as a case 

for 1DB-IPPs is introduced in section 3 and 

detailed experimental results are reported. 

The paper is concluded and remarks for fur-

ther research are added in section 4.

2. EDS Algorithm
Suppose that k items are to be selected each 

with a non-negative selection cost and a pre-

defined budget is available for selection. In 

such circumstances, the EDS algorithm is go-

ing to enumerate dominant solutions, as pre-

viously defined. Before the formal presenta-

tion of the EDS algorithm, some prerequisite 

points must be highlighted.

• The EDS algorithm holds a k-length binary 

number as the current string which stands for 

a dominant solution. For each string, there 

will be a remaining budget which is defined as 

the available budget in the algorithm.

• The functionality of the EDS algorithm is 

based on the increasing order of items accord-

ing to their costs. Items are therefore sorted 

initially in an increasing order from right to 

left.

• The EDS algorithm, at each iteration, would 

fall into one of the three states defined in the 

algorithm as current states:

• state 0: The current string is a budget-wise 

feasible, but non-dominant solution,

• state 1: The current string is a dominant solu-

tion,

• state 2: The current string is a budget-wise 

infeasible solution.

• To perform a proper operation the EDS algo-

rithm would need to specify the current state. 

This is done simply by checking the current 

string:

• If the available budget ≥ 0 and the rightmost 

‘0’ can be changed to ‘1’ in budget constraint, 

the state is 0,

• If the available budget ≥ 0 and the rightmost 

value is ‘1’, or is ‘0’ but cannot be changed to 

‘1’ in budget constraint, the state is 1,

• If the available budget < 0, the state is 2.

Now the pseudo-code of the EDS algorithm 

can be written:

Begin;

// definitions and initialization:

- define the available budget and set it to B;

- define a string of binary values and set its 

values to ‘0’;

- sort items in an increasing order from right 

Amirali Zarrinmehr, Yousef Shafahi



338International Journal of Transpotation Engineering, 
Vol.1, No.4, Spring 2014

to left according to their costs;

// iterations:

While iterations are not stopped

- specify the current state;

if the current state = 0

- while holding the available budget ≥ 0, 

change the rightmost ‘0’ to ‘1’ and update the 

available budget;

else if the current state = 1

- enumerate the current state as a dominant 

solution;

- change the rightmost sequence of ‘1’s to ‘0’, 

and update the available budget;

- if the next rightmost ‘0’ is existent, change 

it to ‘1’ and update the available budget; else 

stop the iterations;

else // current state = 2

- if the second rightmost ‘1’ is existent, change 

the two rightmost ‘1’s to ‘0’ and update the 

available budget; else stop the iterations;

- if the next rightmost ‘0’ is existent, change 

it to ‘1’ and update the available budget; else 

stop the iterations;	

endwhile

End;

To observe the functionality of the EDS algo-

rithm, a simple example is presented in Table 

1. In this example, a total budget of 60 is as-

sumed to be at hand and there are eight items 

for selection, with costs: 8, 16, 28, 29, 32, 40, 

45 and 58. Table 1 shows the way the itera-

tions are performed by the EDS algorithm.

The sequence of states in this table suggests 

a functionality diagram for the algorithm 

which is shown in Figure 1. According to this 

diagram, the algorithm starts with the state 0 

from which it necessarily moves to state 1. In 

either states of 1 or 2, the algorithm may move 

to any of the three states as well as the end of 

the iterations. This functionality is discussed 

further in the next subsections.

2.1 Notes about the EDS Algorithm

To formally discuss the functionality of the 

EDS algorithm, three preliminary lemmas are 

provided. These lemmas support the diagram 

shown in Figure 1 and also indicate that nei-

ther of dominant solutions is ignored by the 

algorithm. Note that in this subsection, wher-

ever binary strings are compared, the corre-

sponding binary numbers are considered.

Lemma 1: If the current state is 1, the EDS 

algorithm moves from the current string, S1, 

to a new string, S2, that S1<S2. If the algorithm 

does not stop, the new state can be 0, 1, or 2 

(as shown in Figure 1) and no dominant solu-

tion like S that S1<S<S2 is ignored.

Proof: The current string could be shown like 

S1=CBA (e.g. S1=001011011100) in which:

- A is the sub-string of rightmost successive 

elements of ‘0’ (e.g. A=00),

- B is the sub-string of the rightmost succes-

sive elements of ‘1’ (e.g. B=111),

- C is the sub-string which immediately fol-

lows B (e.g. C=0010110).

Assume that C≠Ø. Then, according to the 

pseudo-code, all elements of ‘1’ in B change 
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Table 1. An example for the EDS algorithm functionality

Figure 1. The Functionality Diagram of the EDS Algorithm

End

Begin

State 2 State 1

State 0
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into ‘0’ and the rightmost element of C, 

which is necessarily ‘0’, changes into ‘1’ (e.g. 

S2=001011100000). The next state would be 

either ‘0’, ‘1’ or ‘2’ with respect to the costs 

of the changed elements. The emerging string, 

S2, clearly as a binary value has a greater val-

ue than S1.

For any string like S that S1<S<S2 (e.g. 

S=001011011101), S differs with S1 but only 

in some elements of A that are changed into 

‘1’. The string S, as a result, cannot be a domi-

nant solution, because this contradicts the ini-

tial assumption that S1 is a dominant solution. 

Therefore there is no dominant solution like S 

that the EDS algorithm ignores in the transi-

tion from S1 to S2.

Also if C=Ø, the algorithm stops and a similar 

argument would prove that no dominant solu-

tion like S such that S>S1 is ignored by the 

algorithm. 

Lemma 2: If the current state is 2, the EDS 

algorithm moves from the current string, S1, 

to a new string, S2, that S1<S2. If the algorithm 

does not stop, the new state can be 0, 1, or 2 

(as shown in Figure 1) and no dominant solu-

tion like S that S1<S<S2 is ignored.

Proof: According to the pseudo-code, if the 

current string, S1, is comprised of only one el-

ement of ‘1’, the algorithm stops and because 

the current string has been an infeasible solu-

tion, neither of greather strings would be fea-

sible. 

Assume that there exist at least two ele-

ments of ‘1’ in the current string, (e.g. 

S1=010011100010) and that B is the sub-string 

of successive elements of ‘1’ starting from the 

second rightmost ‘1’ (e.g. B=111). The current 

string, S1, could now be written like CBA in 

which:

- A is the sub-string of rightmost successive 

elements before the second rightmost ‘1’ (e.g. 

A=00010),

- C is the sub-string immediately following B 

at the left side (e.g. C=0100).

Suppose that C≠Ø. Then, according to the 

pseudo-code, all elements of B and A are set 

into ‘0’ and the rightmost element of C, which 

is necessarily ‘0’, is changed into ‘1’ (e.g. 

S2=010100000000). Similar to the argument 

for lemma 1, the new string, S2, is greater than 

S1 and the new state would be either 0, 1 or 2.

The sub-string A in S_1 can further be decom-

posed like A_21A_1 in which:

- A1 is the sub-string of rightmost successive 

elements of ‘0’ before the first ‘1’ (e.g. A1=0),

- 1 is an intermediate element of A, separating 

the two sub-strings of A1 and A2,

- A2 is the sub-string of successive elements of 

‘0’ between the first and second rightmost ‘1’s 

of S1 (e.g. A2=000).

For binary strings like S that S1<S<S2 (e.g. 

S=010011100011 or 010011101000), either 

one of two cases might happen:

(a)  Some elements of A1 are changed into ‘1’ 

and all elements at the left side of A1 are the 

same as S1.

(b) Some elements of A2 are changed into ‘1’ 

and all elements at the left side of A2 are the 
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same as S1.

In both cases of (a) and (b), the corresponding 

cost for S would be equal to or greater than 

S1 which results in infeasibility of S (In case 

(b) this is true due to the sorting of items ac-

cording to their costs, which was an initial as-

sumption). Therefore, all strings between S1 

and S2 become infeasible and the EDS algo-

rithm does not ignore any dominant solution 

in this transition.

Also, if C=Ø, the algorithm stops according 

to the pseudo-code and a similar argument 

shows that no dominant solution like S that 

S>S1 is ignored. 

Lemma 3: If the current state is 0, the EDS 

algorithm moves from the current string, S1, 

to a new string, S2, that S1<S2. The new state 

will always be 1 (as shown in Figure 1) and 

no dominant solution like S that S1<S<S2 is 

ignored.

Proof: In order to prove this lemma, a suffi-

cient condition would be the following auxil-

iary lemma and thereafter, the lemma can be 

easily proved using induction over states of 0.

Auxiliary lemma: If the current state is 0 and 

the previous state has been either 1 or 2, the 

EDS algorithm moves from the current string, 

S1, to a new string, S2, that S1<S2. The new 

state will always be 1 and no dominant solu-

tion like S that S1<S<S2 is ignored.

Proof of auxiliary lemma: Suppose 

that the previous string has been S0 (e.g. 

S0=001100111000) in either states of 1 or 2. 

This string can be shown like BA in which:

- A is the sub-string of rightmost successive 

elements including the rightmost elements of 

‘1’ and ending at the subsequent element of 

‘0’ (e.g. A=0111000),

- B is the sub-string immediately following A 

at the left side (e.g. B = 00110).

According to the instructions related to states 

1 and 2 in the pseudo-code, after the transition 

from S0 to S1, all elements of A would become 

‘0’ except the leftmost element which changes 

into ‘1’ (e.g. . S1=001101000000). Then, while 

the budget constraint is not violated, the algo-

rithm changes the rightmost elements of ‘0’ 

into ‘1’ (e.g. S1=001101001111). This clearly 

can not result in changing all ‘0’ elements of 

A into ‘1’, because it contradicts the assump-

tion that S0 (with some ‘0’ elements in A) is 

a dominant solution. Therefore, in the new 

string, S2, the sub-string A will have a struc-

ture like 1A2 A1 in which:

- A1 is the sub-string of rightmost successive 

elements of ‘1’ (e.g. A1=1111),

- A2 is the sub-string of rightmost successive 

elements of ‘0’ (e.g. A2=00),

	 1 is the leftmost element of A.

The string S2 is clearly greater than S1. It is 

also a dominant solution, because the right-

most element of ‘0’ in A2 (and consequently 

neither of the following elements of ‘0’ at the 

left side) can be changed into ‘1’ while hold-

ing the feasibility constraint.

Moreover, for any string like S that S1<S<S2, 

some elements of A2 should be ‘0’ and there-

fore, S can not be a dominant solution, be-
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cause this would contradict the previous argu-

ment that S2 is a dominant solution. Therefore, 

the algorithm does not ignore any dominant 

solutions in its transition form S1 to S2.  

Lemmas 1 to 3 indicate that the EDS algo-

rithm traverses k-length binary numbers in an 

increasing order. These numbers are clearly 

finite. Hence, in order to prove that the EDS 

algorithm enumerates all dominant solutions, 

it is sufficient to prove the following corollary. 

The proof is trivial by induction.

Corollary: At each iteration, all dominant 

solutions with binary values smaller than the 

current string have been enumerated by the 

EDS algorithm.

2.2 A Rough Computational Analysis for 

the EDS Algorithm

According to the pseudo-code of the EDS al-

gorithm, it is simple to see that:

• Operations related to current state 0, are per-

formed at most in O(k).

• Operations related to current state 1, are per-

formed at most in O(k).

• A sequence of operations related to current 

state 2, can be performed computationally in 

no more than O(k).

Therefore, regarding Figure 1, the generation 

of each dominant solution takes place com-

putationally in at most C = O(3k). A more 

accurate analysis, however, may be possible 

for the EDS algorithm via amortized analysis 

[Cormen et al, 2001]; nonetheless this rough 

analysis leads to an interesting property for 

the algorithm: Given that N is the total num-

ber of dominant solutions in a 1DB-IPP feasi-

ble space, the EDS algorithm enumerates all 

dominant solutions in at most C*N compu-

tational cost, no matter what the size of the 

search space is.

3. Case-study on NDP
This section briefly reviews a definition of 

NDP as a 1DB-IPP in transportation planning: 

NDP with fixed travel-time links. The B&B 

algorithm as a traditional exact method to 

tackle the problem is first overviewed. Next, 

it is discussed how the EDS algorithm could 

be applied to this problem. The section finally 

compares the performances of the B&B algo-

rithm and the method developed in this paper, 

namely the EDS algorithm.

3.1 ND with fixed travel-time links

Network design includes a variety of appli-

cable problems in transportation planning, 

logistics, telecommunication, and production. 

In this problem, usually the aim is to choose 

arcs in a network to enable demand to flow be-

tween Origin-Destinations (ODs) at the low-

est system cost [Alba, 2005]. The complexity 

of this problem stems from the combinatorial 

number of alternative decisions to be selected 

among. In transportation planning, network 

design is known as a classical problem with 

a bi-level structure which aims at choosing 

the best subset of proposed projects (i.e. new 
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Figure 2. Sioux-Falls network and projects configuration

Table 2. Definitions of projects in the Sioux-Falls network
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while the overall performance of the B&B al-

gorithm is notably faster, the EDS algorithm 

outperforms the B&B algorithm for lower lev-

els of budget.

This paper investigated the performance of the 

EDS algorithm on one 1DB-IPP in transporta-

tion planning via an experimental approach. 

More experiments on other 1DB-IPPs as well 

as theoretical study of the performance of the 

algorithm would further extend the results of 

this paper. The comparison of the proposed 

algorithm with other methods in different 

conditions can also be interesting for further 

studies.
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