Enumeration of Dominant Solutions

An Application in Transport Network Design
Amirali Zarrinmehr! Yousef Shafahi

Received: 23.08.2013 Accepted: 11.11.2013

Abstract

A One-Dimensional Binary Integer Programming Problem (1DB-IPP) is concerned with select-
ing a subset from a set of k items in budget constraint to optimizean objective function.In this problem
a dominant solution is defined as a feasible selection to which no further item could be added in
budget constraint. This paper presents a simple algorithm for Enumeration of Dominant Solu-
tions (EDS) and investigates its functionality. The algorithm is then applied on the formulation
of the Network Design Problem (NDP) with fixed travel-time links. The problem is a case study
of 1DB-IPPs in the transportation planning literature which arises in the networks where the link
travel-times are not sensitive to the amount of flow. The results are reported in detail for three il-
lustrative examples and compared with the results of the Branch-and-Bound (B&B) algorithm.
These examples suggest that in lower budget levels up to 40.2, 40.3 and 27.1 percentages the EDS
algorithm outperforms the B&B algorithm. However, the overall performance of the B&B algo-

rithm is notably faster in higher budget levels.

Keywords: Enumeration, dominant solution, branch-and-bound algorithm, network design prob-

lem

Corresponding author Email: amirali.zarrinmehr@modares.ac.ir
1- MSc. Graduate, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
2- Professor, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran

International Journal of Transpotation Engineering,
Vol.1, No.4, Spring 2014

Enumeration of Dominant Solutions An Application in Transport Network Design

1. Introduction
Combinatorial problems arise in various ap-
plications of planning, scheduling and com-
puter aided design [Grama and Kumar, 1993].
Many of these problems are classified in the
NP-Hard complexity class. To address the ex-
act solution of such problems, an exhaustive
search would require impractical running time
in real instances. Therefore, implicit enumera-
tion methods have been widely devised by the
researchers to tackle these problems [Ibaraki,
1976; Rust, 2006].
There are instances in combinatorial problems
where the optimal solution could be searched
in a smaller subset of feasible solutions, i.e.
dominant solutions, instead of the entire search
space. As an example consider the subset-sum
problem in which a subset of weights w , w.,
., W, must be chosen in a manner that the
total sum of weights is maximized without ex-
ceeding a given capacity, C. The formulation

is as follows [Pisinger, 1995]:

Max. Z=} . *“lwy, (1)
s.t.: Z(izl)“ lw y <C, (2)
y,=0orl, 1<i<k, (3)

Assuming the weights in the subset-sum
problem to be non-negative, it is clear that
the selection of more items, if capacity-wise
feasible, will not result in a worse solution.
Therefore, solutions with more selected items
clearly dominate those with fewer items. In

other words, one could ignore solutions with

International Journal of Transpotation Engineering,
Vol.1, No.4, Spring 2014

336

fewer items and concentrate on the remaining
search space.

For a more general discussion, consider a
IDB-IPP which is the problem of selection
among k items in budget constraint in order to
achieve the optimum for an objective functionThis

problem can be formulated like (4)-(6).

Opt. F(Y) 4)
s.t.: Z(izl)k lcy <B (5)

y,=0orl, 1<i<k, (6)
where

y, 1s the decision variable taking the value 1
(0) if project 1 s (is not) selected for construc-
tion, 1<1 <k,

Y is k-length vector of decision variables,
F(Y) isan objective function.over Y,

¢, is the selection cost of item 1, 1<1 <k,

B is the available budget.

It is clear that each feasible solution of a 1DB-
IPP can be shown as a k-length binary string.
Define in this problem a dominant solution
as a feasible k-length binary string in which
none of the ‘0’ values could be changed to 1’
in budget constraint. In other words, a domi-
nant solution is a feasible selection of items
where adding any more items makes it infea-
sible. This definition will be frequently used
throughout this paper.

To tackle the exact solution of many 1DB-
IPPs, one approach might be to confine the
search to dominating feasible space, namely

dominant solutions. This paper presents, in

Amirali Zarrinmehr, Yousef Shafahi

such 1DB-IPPs, an algorithm named EDS
for enumerating all dominant solutions and
investigates its functionality. As a case-study
the algorithm is then applied on one of NDP
formulations in transportation planning and
the results are reported and compared with the
B&B algorithm. The results experimentally
suggest that the EDS algorithm could out-
perform the B&B algorithm in certain cases,
whereas the overall performance of the B&B
algorithm is notably faster.

The rest of this paper is structured as follows:
In section 2 the EDS algorithm is introduced
and its functionality is formally discussed via
some lemmas. A NDP formulation, as a case
for 1DB-IPPs is introduced in section 3 and
detailed experimental results are reported.
The paper is concluded and remarks for fur-

ther research are added in section 4.

2. EDS Algorithm

Suppose that k items are to be selected each
with a non-negative selection cost and a pre-
defined budget is available for selection. In
such circumstances, the EDS algorithm is go-
ing to enumerate dominant solutions, as pre-
viously defined. Before the formal presenta-
tion of the EDS algorithm, some prerequisite
points must be highlighted.

* The EDS algorithm holds a k-length binary
number as the current string which stands for
a dominant solution. For each string, there
will be a remaining budget which is defined as

the available budget in the algorithm.

337

* The functionality of the EDS algorithm is
based on the increasing order of items accord-
ing to their costs. Items are therefore sorted
initially in an increasing order from right to
left.

* The EDS algorithm, at each iteration, would
fall into one of the three states defined in the
algorithm as current states:

» state 0: The current string is a budget-wise
feasible, but non-dominant solution,

« state 1: The current string is a dominant solu-
tion,

« state 2: The current string is a budget-wise
infeasible solution.

* To perform a proper operation the EDS algo-
rithm would need to specify the current state.
This is done simply by checking the current
string:

« If the available budget > 0 and the rightmost
‘0’ can be changed to ‘1’ in budget constraint,
the state is 0,

« If the available budget > 0 and the rightmost
value is ‘1°, or is ‘0’ but cannot be changed to
‘1’ in budget constraint, the state is 1,

* If the available budget < 0, the state is 2.
Now the pseudo-code of the EDS algorithm

can be written:

Begin;

// definitions and initialization:

- define the available budget and set it to B;

- define a string of binary values and set its
values to ‘0’;

- sort items in an increasing order from right

International Journal of Transpotation Engineering,
Vol.1, No.4, Spring 2014

Enumeration of Dominant Solutions An Application in Transport Network Design

to left according to their costs;

/[iterations:

While iterations are not stopped

- specify the current state;

if the current state = 0

- while holding the available budget > 0,
change the rightmost ‘0’ to ‘1’ and update the
available budget;

else if the current state = 1

- enumerate the current state as a dominant
solution;

- change the rightmost sequence of ‘1’s to ‘0’,
and update the available budget;

- if the next rightmost ‘0’ is existent, change
it to ‘1’ and update the available budget; else
stop the iterations;

else // current state = 2

- if the second rightmost ‘1’ is existent, change
the two rightmost ‘1’s to ‘0’ and update the
available budget; else stop the iterations;

- if the next rightmost ‘0’ is existent, change
it to ‘1’ and update the available budget; else
stop the iterations;

endwhile

End;

To observe the functionality of the EDS algo-
rithm, a simple example is presented in Table
1. In this example, a total budget of 60 is as-
sumed to be at hand and there are eight items
for selection, with costs: 8, 16, 28, 29, 32, 40,
45 and 58. Table 1 shows the way the itera-
tions are performed by the EDS algorithm.

The sequence of states in this table suggests

International Journal of Transpotation Engineering,
Vol.1, No.4, Spring 2014

338

a functionality diagram for the algorithm
which is shown in Figure 1. According to this
diagram, the algorithm starts with the state 0
from which it necessarily moves to state 1. In
either states of 1 or 2, the algorithm may move
to any of the three states as well as the end of
the iterations. This functionality is discussed

further in the next subsections.

2.1 Notes about the EDS Algorithm

To formally discuss the functionality of the
EDS algorithm, three preliminary lemmas are
provided. These lemmas support the diagram
shown in Figure 1 and also indicate that nei-
ther of dominant solutions is ignored by the
algorithm. Note that in this subsection, wher-
ever binary strings are compared, the corre-
sponding binary numbers are considered.
Lemma 1: If the current state is 1, the EDS
algorithm moves from the current string, S,
to a new string, S, that S <S . If the algorithm
does not stop, the new state can be 0, 1, or 2
(as shown in Figure 1) and no dominant solu-
tion like S that S <S<S is ignored.

Proof: The current string could be shown like
S, =CBA (e.g. S =001011011100) in which:

- A is the sub-string of rightmost successive
elements of ‘0’ (e.g. A=00),

- B is the sub-string of the rightmost succes-
sive elements of ‘1’ (e.g. B=111),

- C is the sub-string which immediately fol-
lows B (e.g. C=0010110).

Assume that C#@. Then, according to the

pseudo-code, all elements of ‘1’ in B change

Amirali Zarrinmehr, Yousef Shafahi

Table 1. An example for the EDS algorithm functionality

Costs of projects Budget
58 45 40 32 29 28 16 8 60
Iteration Available Current
number Current string budget state
1 0 0 0 0 0 0 0 0 60 0
2 0 0 0 0 0 1 1 8 1
3 0 0 0 0 1 0 0 0 31 0
4 0 0 0 0 1 0 1 7 1
5 0 0 0 0 1 1 0 0 3 1
6 0 0 0 1 0 0 0 0 28 0
7 0 0 0 1 0 0 1 1 4 1
8 0 0 0 1 0 1 0 0 0 1
9 0 0 0 1 1 0 0 0 -1 2
10 0 0 1 0 0 0 0 0 20 0
11 0 0 1 0 0 0 0 1 12 1
12 0 0 1 0 0 0 1 0 4 1
13 0 0 1 0 0 1 0 0 -8 2
14 0 1 0 0 0 0 0 0 15 0
15 0 1 0 0 0 0 0 1 7 1
16 0 1 0 0 0 0 1 0 -1 2
17 1 0 0 0 0 0 0 0 2 1
Stop

S

V4

Begin

Figure 1. The Functionality Diagram of the EDS Algorithm

339 International Journal of Transpotation Engineering,
Vol.1, No.4, Spring 2014

Enumeration of Dominant Solutions An Application in Transport Network Design

into ‘0’ and the rightmost element of C,
which is necessarily ‘0’, changes into ‘1’ (e.g.
S,=001011100000). The next state would be
either ‘0°, ‘1’ or ‘2’ with respect to the costs
of the changed elements. The emerging string,
S,, clearly as a binary value has a greater val-
ue than S .

For any string like S that S <S<S (e.g.
S=001011011101), S differs with S, but only
in some elements of A that are changed into
‘1’. The string S, as a result, cannot be a domi-
nant solution, because this contradicts the ini-
tial assumption that S, is a dominant solution.
Therefore there is no dominant solution like S
that the EDS algorithm ignores in the transi-
tion from S, to S..

Also if C=0, the algorithm stops and a similar
argument would prove that no dominant solu-
tion like S such that S>S is ignored by the
algorithm.

Lemma 2: If the current state is 2, the EDS
algorithm moves from the current string, S ,
to a new string, S, that S <S . If the algorithm
does not stop, the new state can be 0, 1, or 2
(as shown in Figure 1) and no dominant solu-
tion like S that S <S<S is ignored.

Proof: According to the pseudo-code, if the
current string, S, is comprised of only one el-
ement of ‘1°, the algorithm stops and because
the current string has been an infeasible solu-
tion, neither of greather strings would be fea-
sible.

Assume that there exist at least two ele-

ments of ‘1’ in the current string, (e.g.

International Journal of Transpotation Engineering,
Vol.1, No.4, Spring 2014

340

S,=010011100010) and that B is the sub-string
of successive elements of ‘1’ starting from the
second rightmost ‘1’ (e.g. B=111). The current
string, S|, could now be written like CBA in
which:

- A is the sub-string of rightmost successive
elements before the second rightmost ‘1’ (e.g.
A=00010),

- C is the sub-string immediately following B
at the left side (e.g. C=0100).

Suppose that C#@. Then, according to the
pseudo-code, all elements of B and A are set
into ‘0’ and the rightmost element of C, which
i1s necessarily ‘0’, is changed into ‘1’ (e.g.
S,=010100000000). Similar to the argument
for lemma 1, the new string, S, is greater than
S, and the new state would be either 0, 1 or 2.
The sub-string Ain S _1 can further be decom-
posed like A 21A 1 in which:

- A, 1s the sub-string of rightmost successive
elements of ‘0 before the first ‘17 (e.g. A =0),
- 1 is an intermediate element of A, separating
the two sub-strings of A, and A,

- A, is the sub-string of successive elements of
‘0’ between the first and second rightmost “1’s
of S, (e.g. A,=000).

For binary strings like S that S <S<S_ (e.g.
S=010011100011 or 010011101000), either
one of two cases might happen:

(a) Some elements of A are changed into ‘1’
and all elements at the left side of A, are the
same as S.

(b) Some elements of A, are changed into ‘1’

and all elements at the left side of A2 are the

Amirali Zarrinmehr, Yousef Shafahi

same as S,.

In both cases of (a) and (b), the corresponding
cost for S would be equal to or greater than
S, which results in infeasibility of S (In case
(b) this is true due to the sorting of items ac-
cording to their costs, which was an initial as-
sumption). Therefore, all strings between S,
and S, become infeasible and the EDS algo-
rithm does not ignore any dominant solution
in this transition.

Also, if C=0, the algorithm stops according
to the pseudo-code and a similar argument
shows that no dominant solution like S that
S>S, is ignored.

Lemma 3: If the current state is 0, the EDS
algorithm moves from the current string, S ,
to a new string, S,, that S <S,. The new state
will always be 1 (as shown in Figure 1) and
no dominant solution like S that S <S<S_ is
ignored.

Proof: In order to prove this lemma, a suffi-
cient condition would be the following auxil-
iary lemma and thereafter, the lemma can be
easily proved using induction over states of 0.
Auxiliary lemma: If the current state is 0 and
the previous state has been either 1 or 2, the
EDS algorithm moves from the current string,
S,, to a new string, S, that S <S . The new
state will always be 1 and no dominant solu-
tion like S that S <S<S is ignored.

of
that the previous string has been S, (e.g.
S,~001100111000) in either states of 1 or 2.
This string can be shown like BA in which:

Proof auxiliary lemma: Suppose

341

- A is the sub-string of rightmost successive
elements including the rightmost elements of
‘1’ and ending at the subsequent element of
‘0’ (e.g. A=0111000),
- B is the sub-string immediately following A
at the left side (e.g. B=00110).
According to the instructions related to states
1 and 2 in the pseudo-code, after the transition
from S to S, all elements of A would become
‘0’ except the leftmost element which changes
into ‘1°(e.g.. S, =001101000000). Then, while
the budget constraint is not violated, the algo-
rithm changes the rightmost elements of ‘0’
into ‘1’ (e.g. S =001101001111). This clearly
can not result in changing all ‘0’ elements of
A into ‘1°, because it contradicts the assump-
tion that S| (with some ‘0’ elements in A) is
a dominant solution. Therefore, in the new
string, S,, the sub-string A will have a struc-
ture like 1A, A in which:
- A, is the sub-string of rightmost successive
elements of ‘1’ (e.g. A =1111),
- A, 1s the sub-string of rightmost successive
elements of ‘0’ (e.g. A =00),

1 is the leftmost element of A.
The string S, is clearly greater than S . It is
also a dominant solution, because the right-
most element of ‘0’ in A, (and consequently
neither of the following elements of ‘0’ at the
left side) can be changed into ‘1’ while hold-
ing the feasibility constraint.
Moreover, for any string like S that S <S<S ,
some elements of A, should be ‘0’ and there-

fore, S can not be a dominant solution, be-

International Journal of Transpotation Engineering,
Vol.1, No.4, Spring 2014

Enumeration of Dominant Solutions An Application in Transport Network Design

cause this would contradict the previous argu-
ment that S, is a dominant solution. Therefore,
the algorithm does not ignore any dominant
solutions in its transition form S to S,.

Lemmas 1 to 3 indicate that the EDS algo-
rithm traverses k-length binary numbers in an
increasing order. These numbers are clearly
finite. Hence, in order to prove that the EDS
algorithm enumerates all dominant solutions,
it is sufficient to prove the following corollary.

The proof is trivial by induction.

Corollary: At each iteration, all dominant
solutions with binary values smaller than the
current string have been enumerated by the

EDS algorithm.

2.2 A Rough Computational Analysis for
the EDS Algorithm

According to the pseudo-code of the EDS al-
gorithm, it is simple to see that:

* Operations related to current state 0, are per-
formed at most in O(k).

* Operations related to current state 1, are per-
formed at most in O(k).

* A sequence of operations related to current
state 2, can be performed computationally in
no more than O(k).

Therefore, regarding Figure 1, the generation
of each dominant solution takes place com-
putationally in at most C = O(3k). A more
accurate analysis, however, may be possible
for the EDS algorithm via amortized analysis

[Cormen et al, 2001]; nonetheless this rough

International Journal of Transpotation Engineering,
Vol.1, No.4, Spring 2014

342

analysis leads to an interesting property for
the algorithm: Given that N is the total num-
ber of dominant solutions in a IDB-IPP feasi-
ble space, the EDS algorithm enumerates all
dominant solutions in at most C*N compu-
tational cost, no matter what the size of the

search space is.

3. Case-study on NDP

This section briefly reviews a definition of
NDP as a 1DB-IPP in transportation planning:
NDP with fixed travel-time links. The B&B
algorithm as a traditional exact method to
tackle the problem is first overviewed. Next,
it is discussed how the EDS algorithm could
be applied to this problem. The section finally
compares the performances of the B&B algo-
rithm and the method developed in this paper,
namely the EDS algorithm.

3.1 ND with fixed travel-time links

Network design includes a variety of appli-
cable problems in transportation planning,
logistics, telecommunication, and production.
In this problem, usually the aim is to choose
arcs in a network to enable demand to flow be-
tween Origin-Destinations (ODs) at the low-
est system cost [Alba, 2005]. The complexity
of this problem stems from the combinatorial
number of alternative decisions to be selected
among. In transportation planning, network
design is known as a classical problem with
a bi-level structure which aims at choosing

the best subset of proposed projects (i.e. new

Amirali Zarrinmehr, Yousef Shafahi

links) for construction in a given network,
while considering users’ behaviour in routing.
an objective function. is usually minimizing the
total travel time of the network users [Poorza-
hedy and Abulghasemi, 2005].

NDP falls into the category of NP-Hard prob-
lems [Garey and Johnson, 1979] for which
there are no effective algorithms, yet, to tackle
the exact solutions for large problem instanc-
es. As a result, researchers have devised vari-
ous met-heuristics such as genetic algorithms
[Yin, 2000], ant colony optimization [Poorza-
hedy and Abulghasemi, 2005; Vitins and Ax-
hausen, 2009] and particle swarm [Babaza-
deh, Poorzahedy and Nikoosokhan, 2011;
Angulo et al, 2013] to address the problem.
Because the focus of this paper is not on meta-
heuristic approaches, the interested reader is
referred to references [Poorzahedy and Abul-
ghasemi, 2005; Vitins and Axhausen, 2010] to
find more about these approaches.

As a special simple formulation of NDPs
[Garey and Johnson, 1979], NDP with fixed
travel-time links, arises in networks in which
the travel-times are not sensitive to the amount
of flow between nodes. This is the case, for ex-
ample, in networks with low levels of conges-
tion or in freight transportation networks. The
problem of NDP with fixed travel-time links,
as a 1DB-IPP, can be formulated as (7)-(9).
Henceforth, this problem is addressed simply
as NDP.
Min.

f.(Y) (7)

343

s.t.: (8)

©)

2 &Y, <B
y,=0orl, <1<k,
In the above formulation, f (Y) is the total
travel time in the network when the network
is augmented by adopting decision vector of
projects, Y, for construction and the demand is
rooted from shortest-paths for all origin-des-
tinations. Routing demand from the shortest-
paths between all origin-destinations is also
known as an All-or-Nothing Traffic Assign-
ment (ANTA) procedure in the transportation
literature [Sheffi, 1985].

To address the exact solution of a NDP, a
general method is the well-known B&B al-
gorithm. Ochoa-Rosso and Silva [15], in an
early study, suggested a B&B tree in the form
of a rooted binary tree in which at level i (1<
i <k) the decision variable y i was decided
over. To evaluate lower bounds on partial so-
lutions, they assumed all undecided projects
to be constructed and applied a traffic assign-
ment for the corresponding network [Ochoa-

Rosso and Silva, 1967].

3.2 The EDS algorithm as a Solution Meth-
od

In a NDP the optimal solution can be found
among the dominant solutions. This is clearly
true because addition of more projects to the
network will augment the feasible space of the
problem. As a result, the EDS algorithm can

be simply applied to achieve the exact solu-

International Journal of Transpotation Engineering,
Vol.1, No.4, Spring 2014

Enumeration of Dominant Solutions An Application in Transport Network Design

tion of the NDP. For this application, domi-
nant solutions are iteratively enumerated and
evaluated. The solution with the best evalua-
tion, at last, would be the optimal solution of

the problem.

3.3 Numerical Experiment

To experimentally study the performance of
the presented algorithm in a 1DB-IPP, the
EDS algorithm and the B&B algorithm (pre-
viously described in 3.1) were implemented in
Java programming language. The Sioux-Falls
transportation network [Bar-Gera, 2011] was
considered with 20 proposed projects. Figure
2 shows the network configuration and pro-
posed projects therein. Details about these
projects are given in Table 2.

Both algorithms of EDS and B&B were run,
on a 2.53 GHz Intel(R) Core(TM) i5 CPU, for
three illustrative examples of NDP with 12, 16
and 20 projects (which are projects 1-12, 1-16
and 1-20 respectively as defined in Table 2).
Given that the total selection cost for projects
is C, different levels for B/C, namely different
budget levels, were also taken into considera-
tion. Running results are given in detail in Ta-
ble 3 (a)-(c) and corresponding curves of the
run-time versus the budget level are plotted in
Figure 3 (a)-(c).

As the results of Table 3 and Figure 3 suggest,
the B&B algorithm has an overall faster per-
formance than the EDS algorithm. The differ-
ence between performances increases combi-

natorially, as the problem enlarges. However,

International Journal of Transpotation Engineering,
Vol.1, No.4, Spring 2014

344

in the related results of three examples, it is
shown that the EDS algorithm could outper-
form the B&B algorithm in lower levels of
budget and emerge as a competitive algo-
rithm. Using a linear interpolation on the data
presented in Table 3, this holds for B/C values
0f0.402,0.403, and 0.271 respectively in case

of three examples in this paper.

4. Concluding Remarks

In a 1DB-IPP, k items are given each with
a specific cost and a limited budget level is
available to select items. It is intended to find,
in budget constraint, a selection of items to
achieve the optimum of an objective function.In this
paper, dominant solution was defined as a fea-
sible selection of items in 1DB-IPP to which
no further items could be added in budget
constraint. For enumeration of these domi-
nant solutions, the paper introduced a simple
enumeration algorithm namely the EDS algo-
rithm. It was proved that the algorithm does
not ignore enumeration of any dominant solu-
tion while each enumeration is done in at most
O(3k).

As an application of the EDS algorithm, the
paper considered the NDP with fixed travel-
time links, where the optimal solution can be
found among dominant solutions. Two pro-
grams corresponding to the B&B algorithm
and the EDS algorithm were implemented in
Java and detailed results were reported on the
Sioux-Falls transportation network for three

examples of NDP. These results suggest that

Amirali Zarrinmehr, Yousef Shafahi

10 / 9
= =

] {

i

Fa
1

]

b

5
]
1

1f

14

o

Figure 2. Sioux-Falls network and projects configuration

D!

4

Table 2. Definitions of projects in the Sioux-Falls network

Project From To Travel Time Related
Number Node Node (minutes) Cost
1 17 18 3.4 5.7
2 6 7 4.6 5.9
3 15 17 3.6 6
4 22 19 4 6.4
5 21 23 3.5 6.4
6 5 8 49 7.1
7 6 9 4.9 7.1
8 8 18 5 7.1
9 19 18 4.9 7.1
10 1 4 5.3 8
11 3 11 5.5 8.5
12 12 4 5.5 8.5
13 9 16 5.1 8.5
14 13 23 4.7 9
15 10 14 6.8 9.2
16 2 5 5.8 9.6
17 14 22 5.6 9.6
18 23 15 5.6 9.6
19 2 7 7.1 10.4
20 4 9 6.6 10.7

345 International Journal of Transpotation Engineering,
Vol.1, No.4, Spring 2014

Enumeration of Dominant Solutions An Application in Transport Network Design

Table 3. Detailed results of running the EDS and B&B algorithms

(a) NDP with proposed projects 1-12

Budget Level EDS B&B Optimum
B B/C ANTAs Run-time (sec) ANTAs Run-time (sec) Solution Evaluation
0.072 4 0.011 39 0.023 [001000000000] 3157500
14 0.17 36 0.02 223 0.076 [000100100000] 3145830
22 0.26 178 0.062 454 0.149 [000100100010] 3130780
30 0.36 458 0.137 597 0.186 [001100000011] 3119340
38 0.46 754 0.221 479 0.152 [001100100011] 3108770
46 0.55 852 0.249 319 0.108 [001101100011] 3099970
54 0.64 618 0.183 146 0.055 [001101100111] 3094560
62 0.74 283 0.089 67 0.031 [101101100111] 3089280
70 0.84 86 0.036 21 0.017 [111111100111] 3086350
78 0.93 12 0.013 16 0.015 [111111101111] 3085890
(b) NDP with proposed projects 1-16
Budget Level EDS B&B Optimum
B B/C ANTAs Run-time (sec) ANTAs Run-time (sec) Solution Evaluation
10 0.09 17 0.016 119 0.046 [0001000000000000] 3156400
15 0.14 62 0.029 421 0.149 [0001000000100000] 3141350
25 0.23 490 0.154 1361 0.419 [0001000000100010] 3127470
35 0.32 1744 0.504 3934 1.142 [0001000000110010] 3114420
45 041 4927 1.381 4568 1.327 [0011001000111000] 3098910
55 0.50 9193 2.541 2817 0.828 [0011001000111010] 3084770
65 0.59 9758 2.724 2172 0.647 [0011011000111010] 3078040
75 0.68 6922 1.930 885 0.274 [1011111000111010] 3070510
85 0.77 3907 1.099 146 0.055 [1011011001111110] 3062420
95 0.86 1377 0.407 82 0.035 [1011111001111110] 3060170
100 0.90 543 0.171 69 0.034 [1011111001111111] 3058700
(c) NDP with proposed projects 1-20
Budget Level EDS B&B Optimum
B B/C ANTAs Run-time (sec) ANTAs Run-time (sec) Solution Evaluation
10 0.06 19 0.018 169 0.061 [00010000000000000000] 3156400
20 0.12 207 0.074 1345 0.419 [00110010000000000000] 3136870
35 0.22 4022 1.133 9625 2.784 [00010000001100100000] 3114420
50 0.31 27110 7.503 21790 6.233 [00010010001110100000] 3093730
65 0.41 82745 22.705 19436 5.538 [00110010001110101000] 3075100
80 0.50 128685 35.122 12527 3.745 [10110010001110101100] 3062760
95 0.59 107838 29.725 3616 1.058 [10110110011110101100] 3050620
110 0.69 48446 13.423 548 0.177 [10111110011111101100] 3041250
125 0.78 11030 3.073 277 0.094 [10111110011111101110] 3038200
140 0.87 1111 0.335 117 0.048 [11111110011111101111] 3035700
150 0.94 156 0.055 54 0.028 [11111110011111111111] 3034230

International Journal of Transpotation Engineering,

Vol.1, No.4, Spring 2014

346

Amirali Zarrinmehr, Yousef Shafahi

03

Run-time
(sec)

Run-time
(sec)

0.2

B/C

0.0 0.2 04 0.6 08 1.0

(a) NDP with proposed projects 1-12

0.4

(b) NDP with proposed projects 1-16

0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

(c) NDP with proposed projects 1-20

Firure 3. Runtime curves for the EDS and B & B algorithms

while the overall performance of the B&B al-
gorithm is notably faster, the EDS algorithm
outperforms the B&B algorithm for lower lev-
els of budget.

This paper investigated the performance of the
EDS algorithm on one 1DB-IPP in transporta-
tion planning via an experimental approach.
More experiments on other 1DB-IPPs as well
as theoretical study of the performance of the
algorithm would further extend the results of
this paper. The comparison of the proposed
algorithm with other methods in different
conditions can also be interesting for further

studies.

5. References
- Alba, E. (2005) “Parallel metaheuristics: A new class
of algorithms”, Wiley Series on Parallel and Distrib-

uted Computing.

- Angulo, E., Castillo, E., Garcia-Rdédenas, R. and
Sanchez-Vizcaino, J. (2013) “A continuous bi-level
model for the expansion of highway networks”, Com-

puters and Operations Research, in press.

347

- Babazadeh, A., Poorzahedy, H. and Nikoosokhan, S.
(2011) “Application of particle swarm optimization
to transportation network design problem”, Journal of
King Saud University-Science, Vol. 23, No. 3, pp. 293-
300.

- Bar-Gera, H. (2011) “Transportation network test
problems”, Accessed September 19, http://www.bgu.

ac.il/~bargera/tntp/.

- Cormen, T. H., Leiserson, C.E., Rivest, R. L. and
Stein, C. (2011) “Introduction to algorithms”, Second

edition. Cambridge, Massachusetts: MIT press.

- Garey, M. R. and Johnson, D. S. (1979) “Computers
and intractability: a guide to the theory of NP-complete-

ness”, W. H. Freeman and Company, San Francisco.

- Grama, A.Y. and Kumar, V. (1993) “A survey of par-
allel search algorithms for discrete optimization prob-

lems”, ORSA Journal on Computing, Vol. 7, pp. 1-40.

- Ibaraki, T. (1976) “Theoretical comparisons of search
strategies in branch-and-bound algorithms”, Interna-
tional Journal of Computer & Information Sciences,

International Journal of Transpotation Engineering,
Vol.1, No.4, Spring 2014

Enumeration of Dominant Solutions An Application in Transport Network Design

Vol. 5, No. 4, pp. 315-44.

- Ochoa-Rosso, F. and Silva, A. (1969) “Optimum
project addition in urban transportation networks via
descriptive traffic assignment models”, Transportation

Systems Division, MIT.

- Pisinger, D. (1995) “Algorithms for knapsack prob-
lems”, Ph.D diss., Department of Computer Science,

University of Copenhagen.

- Poorzahedy, H. and Abulghasemi, F. (2005) “Applica-
tion of ant system to network design problem”, Trans-

port, Vol. 32, No. 3, pp. 251-273.

- Rust, J. (2006) “Dynamic programming”, New Pal-

grave Dictionary of Economics.

International Journal of Transpotation Engineering,
Vol.1, No.4, Spring 2014

348

- Sheffi, Y. (1985) “Urban transportation networks:
Equilibrium analysis with mathematical programming

methods”, Prentice-Hall Englewood Cliffs, NJ.

- Vitins, B. J., and Axhausen, K. W. (2009) “Optimiza-
tion of large transport networks using the ant colony
heuristic”, Computer-Aided Civil and Infrastructural

Engineering Journal of ASCE, Vol. 24, No. 1, pp. 1-14.

- Vitins, B. J. and Axhausen, K. W. (2010) “Patterns and
grammars for transport network generation”, Proceed-

ings of 14 the Swiss Transport Research Conference.

- Yin, Y. (2000) “Genetic-algorithms-based approach
for bi-level programming models.” , Transportation
Engineering Journal of ASCE, Vol. 126, No. 2, pp. 115-
120.

