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Abstract 

The dynamic response of the railway under accelerated moving load using Dynamic Green Function is 

presented in this paper. For this purpose, an exact and direct modeling technique is introduced for the 

railway modeling as the damped Euler-Bernoulli beam on the partial Winkler foundation with arbitrary 

boundary conditions subjected to the moving load. The effects of the elastic coefficient of Winkler 

foundation, as well as velocity and accelerate of the moving load are assessed. The results are shown 

that the maximum deflection depends on the increasing or decreasing acceleration of the moving load. 

On the other hands, it does not occur at the central point of the beam for all acceleration values. Based 

on the results, the acceleration value of load dominantly defines the dynamic deflection shape of the 

Euler-Bernoulli beam. Some numerical examples are shown to demonstrate the simplicity and 

efficiency of the Dynamic Green Function in the new formulation, in this paper. 

Keywords: Damped Euler-Bernoulli beam, Dynamic Green Function, moving load and boundary     

conditions
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1. Introduction 

The dynamic effects of moving loads were not 

noticed until the mid-19th century. Ting et al. 

developed the double Laplace transformation 

method to solve the dynamic analysis of the 

damped Euler–Bernoulli beam under a moving 

concentrated force [Hamada, 1981]. 

Mackertich provided the dynamic response of 

the simply supported Timoshenko beam under 

the moving load [Mackertich, 1990]. Lin 

investigated the dynamic analysis of 

Timoshenko beam under moving load using 

finite element method [Lin, 1994]. In that 

research, the rotary inertia and shear effect are 

considered and the modal superposition is used 

to solve system equations. Hilal and Zibdeh 

presented the vibration of Euler–Bernoulli 

beam with general boundary conditions under 

the moving load as closed-form solutions [Hilal 

and Zibdeh, 2000]. Savin formulated an 

analytical expression of the dynamic 

amplification factor for the Euler–Bernoulli 

beam under the successive moving loads 

[Savin, 2001]. A method for determining the 

dynamic response of Euler–Bernoulli beam 

under the concentrated and distributed loads is 

presented by Abu-Hilal [Abu-Hilal, 2003]. It is 

used to solve single and multi-loaded beams, 

single and multi-span beams, and statically 

determinate and indeterminate beams. 

Furthermore, the response of the uniform 

Timoshenko beam with infinite length on 

Pasternak-type viscoelastic foundation under 

the harmonic moving load studied by 

Kargarnovin and Younesian [Kargarnovin and 

Younesian, 2004]. The governing differential 

equations solve using complex Fourier 

transformation in conjunction with the residue 

and convolution integral theorems. 

Mehri et al. presented the dynamic response of 

a uniform Euler–Bernoulli beam under moving 

load by the Dynamic Green Function [Mehri et 

al., 2009]. The spectral analysis of beam under 

a random train of moving force is offered by 

Gładysz and Śniady [Gładysz and Śniady, 

2009]. Koziol and Mares exhibited the response 

of a solid forced by a fast moving load [Koziol 

and Mares, 2010]. In this study, the 

mathematical model is described by the Euler-

Bernoulli equation for the beam and the 

Navier’s elasto-dynamic equation for the soil. 

Beskou and Theodorakopoulos presented a 

comprehensive review on the subject of the 

dynamic response of pavement structures under 

moving loads [Beskou and Theodorakopoulos, 

2011]. Also, Ouyang provided an extensively 

advantageous overview of structural dynamics 

problems caused by moving loads [Ouyang, 

2011]. Bajer and Dyniewicz exhibited broad 

description of numerical tools successfully 

applied to the dynamic analysis of the structures 

under moving inertial load [Bajer and 

Dyniewicz, 2012]. Dimitrovová and Rodrigues 

investigated the analysis of the critical velocity 

of moving load along an Euler-Bernoulli beam 

on the viscoelastic foundation [Dimitrovová 

and Rodrigues, 2012]. The critical velocity is 

defined as the load velocity inducing the 

beam’s highest deflections. Zrnić et al. 

presented a combined finite element and 

analytical method for obtaining vibration of a 

gantry crane system under an elastically 

suspended moving body [Zrnić et al., 2015]. 

The dynamic analysis of the axially Euler–

Bernoulli beam on Visco-elastic foundation 

under moving load is presented 

Mohammadzadeh and Mosayebi 

[Mohammadzadeh and Mosayebi, 2014]. 

Zakeri and Shahbabaei introduced effect of 

elastic supports stiffness on the natural 

frequencies and modes of two span beams 

[Zakeri and Shahbabaei, 2015]. Dimitrovová 

derived a new formula for the critical velocity 

of the moving load [Dimitrovová, 2016]. It is 

considered that the Euler–Bernoulli beam 

supported by a foundation with a finite depth. 

Also, a mathematical model of the vehicle–

floating slab track interaction to investigate the 

coupled behavior of the vehicle–track system is 

presented by Esmaeili et al. [Esmaeili et al., 

2016]. 

In the previous studies, the dynamic analysis of 

the undamped Euler–Bernoulli beam under the 

accelerated moving load is presented using the 

Dynamic Green Function. On the other hands, 

these solutions cannot be generalized to 

arbitrary boundary conditions for damped 

Euler–Bernoulli beam on a partial Winkler 

foundation under accelerated moving load. 

Therefore, the objectives of this paper are: 

- To present an analytical–numerical 

technique for the dynamic response of 

damped Euler–Bernoulli beams, with 
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arbitrary boundary conditions, on the 

partial Winkler foundation under 

accelerated moving load. 

- To state an exact solution in closed 

form using the Dynamic Green 

Function. 

2. Modeling of Beam on Winkler 

Foundation under Accelerating 

Moving Load 

In this paper, it is assumed a damped Euler–

Bernoulli beam under accelerating moving load 

on the partial Winkler foundation as shown in 

Figure 1. By applying Hamilton's principle, the 

differential equation of motion for the 

transverse displacement of the damped Euler–

Bernoulli beam with uniformly distributed 

external damping and simple model of internal 

damping (Kelvin-Voigt model) can be 

determined by: 

𝐸𝐼 𝑤,𝑥𝑥𝑥𝑥 + 𝑟𝑖𝑤,𝑥𝑥𝑥𝑥𝑡 + 𝑟𝑒𝑤,𝑡  + 𝜌𝐴 𝑤,𝑡𝑡
+ 𝐾𝑊𝑤(𝐻(𝑥 − 𝛽𝐿𝐿)

− 𝐻(𝑥 − (𝛽𝐿 + 𝛽𝐿)𝐿))

= 𝐹 𝛿(𝑥 − XF(t)) 

(1) 

 

where 𝑤(𝑥, 𝑡) is the transverse deflection of the 

mid-surface of the beam and F is the 

concentrated force exerted by the moving load 

on the beam. In addition, I, E, 𝑟𝑖, 𝑟𝑒, A and ρ are 

the second moment of area, the Young’s 

modulus of elasticity, the internal damping 

coefficient of the beam that is generally very 

small [Lancaster and Shkalikov, 1994], the 

external damping coefficient of the beam, the 

cross-sectional area of the beam, and the beam 

material density, respectively. Also, 𝐻(𝑤) is 

the Heaviside unit function which is defined as: 

𝐻(𝑥 − 𝑢) = {
0, 𝑥 < 𝑢
1, 𝑥 > 𝑢

 (2) 

In this paper, the internal and external damping 

effects are assumed to be proportional to the 

stiffness properties and mass of the Euler–

Bernoulli beam, respectively. These 

characteristics are assumed as [Hilal and 

Zibdeh, 2000]: 

𝑟𝑖 = 𝛼𝑖𝐸𝐼 (3) 

𝑟𝑒 = 𝛼𝑒𝜌𝐴 (4) 

where 𝛼𝑖 and 𝛼𝑒 are the proportionality 

constants. The dimensionless damping ratio of 

the nth mode of the uniform Euler-Bernoulli 

beam with internal damping can be represented 

as: 

𝜉𝑖 =
1

2
𝛼𝑖𝜔𝑛 (5) 

where ωn is the nth natural frequency of the 

undamped Euler-Bernoulli beam. The 

dimensionless damping ratio of the nth mode of 

the uniform beam with external damping can be 

given by: 

𝜉𝑒 =
1

2

𝛼𝑒
𝜔𝑛

 (6) 

Therefore, the damping factor diminishes in the 

uniform beam with external damping at higher 

modes. On the other hands, the Dirac Delta 

function (δ) is defined by: 

𝛿(𝑥 − 𝑋) = {
+∞       𝑖𝑓 𝑥 = 𝑋
0      𝑖𝑓 𝑥 ≠ 𝑋

 (7) 

The equation of the trajectory of the moving 

load, XF(t), is defined as: 

𝑋𝐹(𝑡) = 𝑣0𝑥𝑡 +
1

2
 𝑎0𝑥𝑡

2 (8) 

where 𝑣0𝑥 is the initial speed of the moving 

load in the x direction and 𝑎0𝑥 is the constant 

acceleration of the moving load in the x 

direction. This function can be described a 

uniform accelerating or decelerating motion. In 

the paper, the homogeneous initial conditions 

associated with the damped Euler–Bernoulli 

beam theory are given below: 

𝑤(𝑥, 0) = 0       𝑤,𝑡(𝑥, 0) = 0 (9) 

𝜃(𝑥, 0) = 0        𝜃,𝑡(𝑥, 0) = 0 (10) 

where 𝑤(𝑥, 𝑡) and 𝜃(𝑥, 𝑡) are the transverse 

deflection of the mid-surface of the beam and 

anticlockwise angle of rotation of the normal to 

the mid-surface, respectively. It is noted that 

each function 𝑤(𝑥, 𝑡) can be presented in the 

form of a product of a function dependent on 

the coordinate x and a function dependent on 

the time t: 

𝑤(𝑥, 𝑡) = 𝑊(𝑥) 𝑇(𝑡) (11) 
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Figure 1. Schematic description of damped Euler–Bernoulli beam on the partial Winkler foundation 

under accelerating moving load 

where 𝑊(x) is the mid-surface deflection in 

point x of the Euler–Bernoulli beam. The 

Dynamic Green Function is utilized to find the 

solution of equation (1) [Li et al., 2014; Mehri 

et al., 2009]. Hence, if G(x, 𝑋𝐹) is the Dynamic 

Green Function of the submitted problem for a 

concentrated moving load, the solution of 

equation (1) can be presented the form 

𝑤(𝑥, 𝑡) = 𝐹 𝐺(𝑥, 𝑋𝐹) (12) 

Therefore, the Dynamic Green Function for a 

moving load, 𝐺(𝑥, X𝐹), is the solution of the 

differential equation: 

(1 +
𝑟𝑖
𝐸𝐼
𝑖𝜔)𝐺,𝑥𝑥𝑥𝑥

+
1

𝐸𝐼
(𝑟𝑒𝑖𝜔 − 𝜌𝐴𝜔

2 +𝐾𝑊)𝐺

=
1

𝐸𝐼
 𝛿(𝑥 − 𝑋𝐹(𝑡)) 

(13) 

where ω is the circular frequency of the 

concentrated moving load. The circular 

frequency of the moving load is calculated as: 

ω =
𝜋 𝑣

𝐿
 (14) 

where 𝑣 is the speed of the concentrated 

moving load in the x direction. The speed of the 

moving load is given as: 

𝑣 = √𝑣0𝑥
2 + 2 𝑎0𝑥 𝑋𝐹 (15) 

The general solution of the differential equation 

(13) can be stated as equation (16): 

where 𝑥 ∈ [0, 𝐿] and 𝑖 represents the imaginary 

unit √−1. The parameter 𝜆 is calculated as: 

𝜆 = √
𝜙2 (1 − 2𝑖

𝜉𝑒

𝛽𝑛
) − 𝜂

1 + 2𝑖𝜉𝑖𝛽𝑛

4

 
(17) 

 

𝐺(𝑥, 𝑋𝐹) =

{
  
 

  
 
𝐶1 𝑠𝑖𝑛(𝜆𝑥) + 𝐶2 𝑐𝑜𝑠(𝜆𝑥) + 𝐶3 𝑠𝑖𝑛ℎ(𝜆𝑥) + 𝐶4 𝑐𝑜𝑠ℎ(𝜆𝑥)        0 ≤ 𝑥 ≤ 𝑋𝐹

𝐶5 𝑠𝑖𝑛(𝜆𝑥) + 𝐶6 𝑐𝑜𝑠(𝜆𝑥) + 𝐶7 𝑠𝑖𝑛ℎ(𝜆𝑥) + 𝐶8 𝑐𝑜𝑠ℎ(𝜆𝑥)
                              

+
𝑠𝑖𝑛(𝜆(𝑋𝐹 − 𝑥)) − 𝑠𝑖𝑛ℎ(𝜆(𝑋𝐹 − 𝑥))

2𝜆3𝐸𝐼(1 + 2𝑖𝜉𝑖𝛽𝑛)
          𝑋𝐹 ≤ 𝑥 ≤ 𝐿

                                                                                                                                      

  (16) 
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where ϕ is the parameter proportional to the 

forcing frequency (𝜙2 =
𝜔2𝜌 𝐴

𝐸𝐼
 ), βn , the 

parameter proportional to the frequency ratio 

that is given as the ratio of the forcing 

frequency to the natural frequency of beam. 

(𝛽𝑛 =
𝜔

𝜔𝑛
), ξi , the damping ratio proportional to 

the internal damping (𝜉𝑖 =
1

2
𝛼𝑖𝜔𝑛), ξe , the 

damping ratio proportional to the external 

damping (𝜉𝑒 =
1

2

𝛼𝑒

𝜔𝑛
), and η is the parameter 

proportional to the elastic coefficient of 

Winkler foundation (𝜂 =
𝐾𝑊

𝐸𝐼
). In equation 

(16), C1, … , C7  and C8 are the integration 

constants that are evaluated such that the 

Dynamic Green Function satisfies two 

boundary conditions at each end of the beam 

depending on the type of end support included. 

In this paper, the general boundary conditions 

associated with the Euler–Bernoulli beam 

theory are given below [Abu-Hilal, 2003]: 

𝑉(0, XF) = −KTL w(0, XF) (18) 

𝑀(0, XF) = KRL θ(0, XF) (19) 

𝑉(L, XF) = KTR w(L, XF) (20) 

𝑀(𝐿, XF) = −KRR θ(L, XF) (21) 

where M, V and θ are the bending moment 

(𝑀 = 𝐸𝐼 𝑤,𝑥𝑥), the shear force (𝑉 = 𝐸𝐼𝑤,𝑥𝑥𝑥), 

and slope (𝜃 = 𝑤,𝑥), respectively [Wang, 

1995]. The Green Function for the Euler–

Bernoulli beam under concentrated moving 

load obtained by the above procedure, has a 

general form. By applying the relationships 

between the individual physical quantities and 

the Green Function, the jump condition and the 

continuity conditions at 𝑥 = 𝑋𝐹 can be written 

as the following [Ghannadiasl and Mofid, 2014, 

2015]: 

𝐺(𝑋𝐹
+, 𝑋𝐹) − 𝐺(𝑋𝐹

−, 𝑋𝐹) = 0 
(22a) 

𝐺,𝑥(𝑋𝐹
+, 𝑋𝐹) − 𝐺,𝑥(𝑋𝐹

−, 𝑋𝐹) = 0 (22b) 

𝐺,𝑥𝑥(𝑋𝐹
+, 𝑋𝐹) − 𝐺,𝑥𝑥(𝑋𝐹

−, 𝑋𝐹)

= 0 

(22c) 

𝐺,𝑥𝑥𝑥(𝑋𝐹
+, 𝑋𝐹) − 𝐺,𝑥𝑥𝑥(𝑋𝐹

−, 𝑋𝐹)

=
1

𝐸𝐼(1 + 2𝑖𝜉
𝑖
𝛽
𝑛
)
 

(22d) 

Therefore, the Dynamic Green Function for the 

damped Euler–Bernoulli beam on the uniform 

Winkler foundation (βR = βL = 0 and βC = 1) 

under the accelerated moving load where it is 

partially restrained against translation and 

rotation at its ends (𝐾𝑅𝑅 = 𝐾𝑅𝐿 = 𝐾𝑅 and 

𝐾𝑇𝑅 = 𝐾𝑇𝐿 = 𝐾𝑇) is given below: 

𝐺(𝑥, 𝑋𝐹)

=
1

2𝐸𝐼𝜆3(1 + 2𝑖𝜉𝑖𝛽𝑛)𝐵3
{
  𝑔(𝑥, 𝑋𝐹)              0 ≤ 𝑥 ≤ 𝑋𝐹
  𝑔(𝑋𝐹 , 𝑥)              𝑋𝐹 ≤ 𝑥 ≤ 𝐿

  (23) 

 

𝑔(𝑥, 𝑋𝐹) = 𝐷1 𝑠𝑖𝑛(𝜆𝑥)+𝐷2 𝑐𝑜𝑠(𝜆𝑥)+𝐷3 𝑠𝑖𝑛ℎ(𝜆𝑥)+𝐷4 𝑐𝑜𝑠ℎ(𝜆𝑥) 

 

𝐷1 = 2
𝐾𝑇
𝐸𝐼
𝜆 (𝜆3 𝑐𝑜𝑠(𝜆(𝐿 − 𝑋𝐹)) + 𝜆

3 𝑐𝑜𝑠ℎ(𝜆(𝐿 − 𝑋𝐹)) +
𝐾𝑇
𝐸𝐼
𝑠𝑖𝑛(𝜆(𝐿 − 𝑋𝐹))

−
𝐾𝑇
𝐸𝐼
𝑠𝑖𝑛ℎ(𝜆(𝐿 − 𝑋𝐹))) (2

𝐾𝑇
𝐸𝐼
𝜆 (
𝐾𝑅
𝐸𝐼
𝑐𝑜𝑠ℎ(𝜆𝐿) + 𝜆 𝑠𝑖𝑛ℎ(𝜆𝐿))

+ (𝜆 𝑐𝑜𝑠ℎ(𝜆𝐿) +
𝐾𝑅
𝐸𝐼
𝑠𝑖𝑛ℎ(𝜆𝐿))𝐵1 + (𝜆 𝑐𝑜𝑠(𝜆𝐿) +

𝐾𝑅
𝐸𝐼
𝑠𝑖𝑛(𝜆𝐿))𝐵2)

+ (
𝐾𝑅
𝐸𝐼
𝑐𝑜𝑠(𝜆(𝐿 − 𝑋𝐹)) −

𝐾𝑅
𝐸𝐼
𝑐𝑜𝑠ℎ(𝜆(𝐿 − 𝑋𝐹)) − 𝜆 𝑠𝑖𝑛(𝜆(𝐿 − 𝑋𝐹))

− 𝜆 𝑠𝑖𝑛ℎ(𝜆(𝐿 − 𝑋𝐹)))(2
𝐾𝑇
𝐸𝐼
𝜆 (𝜆3 𝑐𝑜𝑠ℎ(𝜆𝐿) −

𝐾𝑇
𝐸𝐼
𝑠𝑖𝑛ℎ(𝜆𝐿))

+ (−
𝐾𝑇
𝐸𝐼
𝑐𝑜𝑠ℎ(𝜆𝐿) + 𝜆3 𝑠𝑖𝑛ℎ(𝜆𝐿))𝐵1 + (

𝐾𝑇
𝐸𝐼
𝑐𝑜𝑠(𝜆𝐿) + 𝜆3 𝑠𝑖𝑛(𝜆𝐿))𝐵2) 
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𝐷2 = −𝐵1
𝐷1

2𝜆
𝐾𝑇

𝐸𝐼

− 𝐵2
𝐷3

2𝜆
𝐾𝑇

𝐸𝐼

 

 

𝐷3 = −2
𝐾𝑇
𝐸𝐼
𝜆 (2

𝐾𝑇
𝐸𝐼
𝜆 (𝑐𝑜𝑠ℎ(𝜆(𝐿 − 𝑋𝐹)) (2

𝐾𝑅
𝐸𝐼
𝜆3 𝑐𝑜𝑠(𝜆𝐿) + 𝐵1 𝑠𝑖𝑛(𝜆𝐿)) − 𝐵2 𝑠𝑖𝑛(𝜆𝑋𝐹)

+ 𝑠𝑖𝑛ℎ(𝜆(𝐿 − 𝑋𝐹)) (−𝐵1 𝑐𝑜𝑠(𝜆𝐿) + 2
𝐾𝑇
𝐸𝐼
𝜆 𝑠𝑖𝑛(𝜆𝐿)))

+ 𝐵1 (𝐵2 𝑐𝑜𝑠(𝜆𝑋𝐹) + 𝑐𝑜𝑠ℎ(𝜆(𝐿 − 𝑋𝐹)) (−𝐵1 𝑐𝑜𝑠(𝜆𝐿) + 2
𝐾𝑅
𝐸𝐼
𝜆3 𝑠𝑖𝑛(𝜆𝐿))

− 𝑠𝑖𝑛ℎ(𝜆(𝐿 − 𝑋𝐹)) (2
𝐾𝑇
𝐸𝐼
𝜆 𝑐𝑜𝑠(𝜆𝐿) + 𝐵1 𝑠𝑖𝑛(𝜆𝐿)))

+ 𝐵2 (𝐵2 𝑐𝑜𝑠ℎ(𝜆𝑋𝐹) + 𝑐𝑜𝑠(𝜆(𝐿 − 𝑋𝐹)) (−𝐵1 𝑐𝑜𝑠ℎ(𝜆𝐿) + 2
𝐾𝑅
𝐸𝐼
𝜆3 𝑠𝑖𝑛ℎ(𝜆𝐿)))

+ 𝑠𝑖𝑛ℎ(𝜆(𝐿 − 𝑋𝐹)) (−2
𝐾𝑇
𝐸𝐼
𝜆 𝑐𝑜𝑠ℎ(𝜆𝐿) + 𝐵1 𝑠𝑖𝑛ℎ(𝜆𝐿))) 

 

𝐷4 = 𝐵2
𝐷1

2𝜆
𝐾𝑇

𝐸𝐼

+ 𝐵1
𝐷3

2𝜆
𝐾𝑇

𝐸𝐼

 

 

𝐵1 =
𝐾𝑅
𝐸𝐼

𝐾𝑇
𝐸𝐼
− 𝜆4 

𝐵2 =
𝐾𝑅
𝐸𝐼

𝐾𝑇
𝐸𝐼
+ 𝜆4 

𝐵3 = 𝑐𝑜𝑠(𝜆𝐿)(𝐵1 𝑠𝑖𝑛ℎ(𝜆𝐿)(8
𝐾𝑇
𝐸𝐼
𝜆2 (

𝐾𝑅
𝐸𝐼
𝜆2 −

𝐾𝑇
𝐸𝐼
)) − 4

𝐾𝑇
𝐸𝐼
𝜆 𝑐𝑜𝑠ℎ(𝜆𝐿)(𝐵1

2 − 4
𝐾𝑇
𝐸𝐼

𝐾𝑅
𝐸𝐼
𝜆2))

+ 𝑠𝑖𝑛(𝜆𝐿)(𝐵1 𝑐𝑜𝑠ℎ(𝜆𝐿)(8
𝐾𝑇
𝐸𝐼
𝜆2 (

𝐾𝑅
𝐸𝐼
𝜆2 +

𝐾𝑇
𝐸𝐼
)) + 8𝜆3 𝑠𝑖𝑛ℎ(𝜆𝐿)((

𝐾𝑇
𝐸𝐼
)
3

−
𝐾𝑇
𝐸𝐼
(
𝐾𝑅
𝐸𝐼
)
2

𝜆4))

+ 4
𝐾𝑇
𝐸𝐼
𝜆𝐵2

2 

where, 𝑔(𝑋𝐹 , 𝑥) is obtained by switching x and 

𝑋𝐹 in 𝑔(𝑥, 𝑋𝐹). This follows from the fact that 

𝐺(𝑥, 𝑋𝐹) must be symmetric to satisfy the 

Maxwell-Rayleigh reciprocity law. For 

example, in the damped Euler–Bernoulli beam, 

the Dynamic Green Function for the simply 

supported boundary condition is given below: 

The expression given by equation (24) is 

exactly the forced vibration part obtained by 

Abu-Hilal [Abu-Hilal, 2003]. In this paper, the 

Euler–Bernoulli beam divides into three 

segments with and without Winkler foundation.

𝐺(𝑥, 𝑋𝑀) =
1

2 𝐸𝐼 (1 + 2𝑖𝜉𝑖𝛽𝑛) 𝜆
3 {
  𝑔(𝑥, 𝑋𝐹)              0 ≤ 𝑥 ≤ 𝑋𝐹
  𝑔(𝑋𝐹 , 𝑥)              𝑋𝐹 ≤ 𝑥 ≤ 𝐿

  (24) 

𝑔(𝑥, 𝑋𝐹) =
𝑠𝑖𝑛(𝜆(𝐿 − 𝑋𝐹))

𝑠𝑖𝑛(𝜆𝐿)
𝑠𝑖𝑛(𝜆𝑥) −

𝑠𝑖𝑛ℎ(𝜆(𝐿 − 𝑋𝐹))

𝑠𝑖𝑛ℎ(𝜆𝐿)
𝑠𝑖𝑛ℎ(𝜆𝑥) 
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𝐺𝐿(𝑥, 𝑋𝐹) =

{
 
 

 
 
𝐶1𝐿 𝑠𝑖𝑛(𝜆𝐿𝑥) + 𝐶2𝐿 𝑐𝑜𝑠(𝜆𝐿𝑥) + 𝐶3𝐿 𝑠𝑖𝑛ℎ(𝜆𝐿𝑥) + 𝐶4𝐿 𝑐𝑜𝑠ℎ(𝜆𝐿𝑥)     0 ≤ 𝑥 ≤ 𝑋𝐹

                                                                                                                
𝐶5𝐿 𝑠𝑖𝑛(𝜆𝐿𝑥) + 𝐶6𝐿 𝑐𝑜𝑠(𝜆𝐿𝑥) + 𝐶7𝐿 𝑠𝑖𝑛ℎ(𝜆𝐿𝑥) + 𝐶8𝐿 𝑐𝑜𝑠ℎ(𝜆𝐿𝑥)

+ 
𝑠𝑖𝑛(𝜆𝐿(𝑋𝐹 − 𝑥)) − 𝑠𝑖𝑛ℎ(𝜆𝐿(𝑋𝐹 − 𝑥))

2𝜆𝐿
3𝐸𝐼(1 + 2𝑖𝜉𝑖𝛽𝑛)

      𝑋𝐹 ≤ 𝑥 ≤ 𝛽𝐿𝐿

                            

 (25) 

 

𝐺𝐶(𝑥, 𝑋𝐹)

=

{
 
 

 
 
𝐶1𝐶 𝑠𝑖𝑛(𝜆𝐶𝑥) + 𝐶2𝐶 𝑐𝑜𝑠(𝜆𝐶𝑥) + 𝐶3𝐶 𝑠𝑖𝑛ℎ(𝜆𝐶𝑥) + 𝐶4𝐶 𝑐𝑜𝑠ℎ(𝜆𝐶𝑥)          𝛽𝐿𝐿 ≤ 𝑥 ≤ 𝑋𝐹                                                                                                                

𝐶5𝐶 𝑠𝑖𝑛(𝜆𝐶𝑥) + 𝐶6𝐶 𝑐𝑜𝑠(𝜆𝐶𝑥) + 𝐶7𝐶 𝑠𝑖𝑛ℎ(𝜆𝐶𝑥) + 𝐶8𝐶 𝑐𝑜𝑠ℎ(𝜆𝐶𝑥) 

+ 
𝑠𝑖𝑛(𝜆𝐶(𝑋𝐹 − 𝑥)) − 𝑠𝑖𝑛ℎ(𝜆𝐶(𝑋𝐹 − 𝑥))

2𝜆𝐶
3𝐸𝐼(1 + 2𝑖𝜉𝑖𝛽𝑛)

        𝑋𝐹 ≤ 𝑥 ≤ 𝐿(𝛽𝐿 + 𝛽𝐶)

                                      

 
(26) 

 

𝐺𝑅(𝑥, 𝑋𝐹)

=

{
 
 

 
 
𝐶1𝑅 𝑠𝑖𝑛(𝜆𝑅𝑥) + 𝐶2𝑅 𝑐𝑜𝑠(𝜆𝑅𝑥) + 𝐶3𝑅 𝑠𝑖𝑛ℎ(𝜆𝑅𝑥) + 𝐶4𝑅 𝑐𝑜𝑠ℎ(𝜆𝑅𝑥)       𝐿(𝛽𝐿 + 𝛽𝐶) ≤ 𝑥 ≤ 𝑋𝐹                                                                                                                

𝐶5𝑅 𝑠𝑖𝑛(𝜆𝑅𝑥) + 𝐶6𝑅 𝑐𝑜𝑠(𝜆𝑅𝑥) + 𝐶7𝑅 𝑠𝑖𝑛ℎ(𝜆𝑅𝑥) + 𝐶8𝑅 𝑐𝑜𝑠ℎ(𝜆𝑅𝑥)

+ 
𝑠𝑖𝑛(𝜆𝑅(𝑋𝐹 − 𝑥)) − 𝑠𝑖𝑛ℎ(𝜆𝑅(𝑋𝐹 − 𝑥))

2𝜆𝑅
3𝐸𝐼(1 + 2𝑖𝜉𝑖𝛽𝑛)

        𝑋𝐹 ≤ 𝑥 ≤ 𝐿

                                                  

 
(27) 

The differential equation of the vibration can be 

presented for each segment. Therefore, the 

Dynamic Green Function for the first segment 

can be stated as equation (25), where 𝑥 ∈
[0, 𝛽𝐿𝐿], λL is calculated as: 

𝜆𝐿 =
√
𝜙2 (1 − 2𝑖

𝜉𝑒

𝛽𝑛
)

1 + 2𝑖𝜉𝑖𝛽𝑛

4

  
(28) 

For the middle section, the Dynamic Green 

Function takes the form of equation (26), where 

𝑥 ∈ (𝛽𝐿𝐿, 𝐿(𝛽𝐿 + 𝛽𝐶)], λC  is calculated as: 

𝜆𝐶 =
√
𝜙2 (1 − 2𝑖

𝜉𝑒

𝛽𝑛
) − 𝜂

1 + 2𝑖𝜉𝑖𝛽𝑛

4

 
(29) 

Similarly, it is possible to develop the Dynamic 

Green Function for the last section of the Euler–

Bernoulli beam (equation (27)), where x ∈
(L(βL + βC), L], λR is calculated as: 

𝜆𝑅 =
√
𝜙2 (1 − 2𝑖

𝜉𝑒

𝛽𝑛
)

1 + 2𝑖𝜉𝑖𝛽𝑛

4

 
(30) 

C1L − C8L , C1C − C8C and C1R − C8R are the 

constant unknowns of the three above-

mentioned solutions. In order to find these 

unknowns, it is required to develop twenty-four 

equations. 
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𝑊𝑑(𝑥, 𝑋𝐹) = −
𝐹 𝑣

2𝐸𝐼𝜆2𝜔𝑛(1 + 2𝑖𝜉𝑖𝛽𝑛)
𝑠𝑖𝑛 (

𝜔𝑛
𝑣
𝑋𝐹) (

𝑠𝑖𝑛(𝜆(𝐿 − 𝑥))

𝑠𝑖𝑛(𝜆𝐿)
−
𝑠𝑖𝑛ℎ(𝜆(𝐿 − 𝑥))

𝑠𝑖𝑛ℎ(𝜆𝐿)
) 

                                                                                                                                                            0 ≤ 𝑥, 𝑋𝐹 ≤ 𝐿 

(33) 

The constant unknowns are obtained using two 

boundary conditions at each end of the beam 

depending on the type of end support and the 

continuity conditions of slope, displacement 

and moment along with the shear force in the 

vicinities of the different segment connections. 

The continuity conditions are defined as:  

𝐺𝐿(𝛽𝐿𝐿)  = 𝐺𝐶(𝛽𝐿𝐿)  (31a) 

𝜃𝐿(𝛽𝐿𝐿)  = 𝜃𝐶(𝛽𝐿𝐿)  (31b) 

𝑀𝐿(𝛽𝐿𝐿)  = 𝑀𝐶(𝛽𝐿𝐿)  (31c) 

𝑉𝐿(𝛽𝐿𝐿) = 𝑉𝐶(𝛽𝐿𝐿) (31d) 

and 

𝐺𝐶(𝛽𝐿𝐿 + 𝛽𝐶𝐿)  = 𝐺𝑅(𝛽𝐿𝐿 + 𝛽𝐶𝐿)  (32a) 

𝜃𝐶(𝛽𝐿𝐿 + 𝛽𝐶𝐿)  = 𝜃𝑅(𝛽𝐿𝐿 + 𝛽𝐶𝐿)  (32b) 

𝑀𝐶(𝛽𝐿𝐿 + 𝛽𝐶𝐿)  = 𝑀𝑅(𝛽𝐿𝐿 + 𝛽𝐶𝐿)  (32c) 

𝑉𝐶(𝛽𝐿𝐿 + 𝛽𝐶𝐿) = 𝑉𝑅(𝛽𝐿𝐿 + 𝛽𝐶𝐿) (32d) 

Equations (23) and (24) are presented the 

particular solution for the governing equation 

(the forced vibration part of the deflection) of 

the stated problem. The boundary conditions 

are embedded in the Dynamic Green function 

for equations (23) and (24). Although, it still 

needs to satisfy the two initial conditions given 

by equations (9) and (10). Therefore, the 

complementary solution should be added for 

equations (23) that is given by equation (33), 

where ωn is the nth natural frequency of Euler–

Bernoulli beam and 𝑣 is the speed of the load  

( 𝑣 = 𝑣0𝑥 + 𝑎0𝑥𝑡 ). The dimensionless speed 

parameter is defined as: 

𝛼 =
𝑣

𝑣𝑐𝑟
=
𝑣0𝑥 + 𝑎0𝑥𝑡

𝑣𝑐𝑟
 (34) 

where, 𝑣𝑐𝑟, the critical speed is equal by 𝑣𝑐𝑟 =
2L

T
=

L

𝜋
𝜔𝑛. 

3. Numerical Examples 

For the purpose of verification, a simply 

supported Euler–Bernoulli beam neglecting the 

damping effect of the beam subjected to a 

moving load is considered. The beam is 

supposed with the following characteristics: 

KW = 0  ξe = 0  ξi = 0 

ϕ2 =
ω2ρ A

EI
  v = α vcr  XF(t) = 𝑣0𝑥t 

ω =
𝜋 𝑣

𝐿
  𝑎0𝑥 = 0 

For the simply supported damping Euler–

Bernoulli beam, the nth damped natural 

frequency is: 

𝜔𝑛𝐷 = 𝑖𝜔𝑛 (ξ ±√ξ
2 − 1) (35) 

where 𝜔𝑛 is the nth undamped natural frequency 

of the simply supported Euler-Bernoulli beam 

that can be given by 

𝜔𝑛 = (
𝑛𝜋

𝐿
)
2

√
𝐸𝐼

𝜌𝐴
 

 

(36) 

ξ is the damping ratio that is defined as: 

ξ =
𝛼𝑒 +𝜔𝑛

2𝛼𝑖
2𝜔𝑛

= 𝜉𝑒 + 𝜉𝑖 
(37) 

when 0< ξ < 1, the system is under-damped. In 

this case, the damped natural frequency can be 

generally rewritten as: 

𝜔𝑛𝐷 = 𝜔𝑛√1 − ξ
2 

(38) 

Table 1 compares the central deflection of the 

simply supported Euler–Bernoulli beam 

(w(𝐿
2
 ,𝑋𝐹) wst⁄ ) using the Green Function 

method along with the Fourier series solution 

[Foda and Abduljabbar, 1998]. It is seen that 

the results are fairly close. Based on results in 

Table 1, the central deflection of the Euler–

Bernoulli beam (w(𝐿
2
 ,𝑋𝐹)) is more sensitive to 

the variation of the speed parameter. 
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Table 1. The central deflection of the Euler–Bernoulli beam (𝐰(𝑳𝟐,𝑿𝑭) 𝐰𝐬𝐭⁄ ) under a moving load 

𝛼 
𝑋𝐹
𝐿

 Present study 
Foda and Abduljabbar [Foda 

and Abduljabbar, 1998] 

0 

0.1 0.296013 0.296 

0.3 0.792068 0.792 

0.5 1.00021 1.000 

0.7 0.792023 0.792 

0.9 0.296013 0.296 

0.05 

0.1 0.296763 0.296761 

0.3 0.793998 0.793997 

0.5 1.00247 1.00247 

0.7 0.793998 0.793997 

0.9 0.296763 0.296761 

0.125 

0.1 0.229522 0.226955 

0.3 0.689272 0.685135 

0.5 1.01565 1.01567 

0.7 0.920038 0.924161 

0.9 0.372143 0.374681 

0.25 

0.1 0.0736325 0.0653048 

0.3 0.995125 1.00021 

0.5 1.06571 1.06579 

0.7 0.695177 0.690039 

0.9 0.558959 0.567171 

0.375 

0.1 0.0347739 0.0274662 

0.3 0.676444 0.6687 

0.5 1.52377 1.53399 

0.7 1.0927 1.09811 

0.9 -0.0522479 -0.0648094 

 

Figure 2 shows the two-dimensional contour 

graph of the forced vibration of the simply 

supported Euler-Bernoulli beam (
w(

𝑋𝐹
𝐿
,
𝑋𝐹
𝐿
)

wst
) 

under moving load for different speed 

parameters α using Dynamic Green Function. 

The moving load is traversed from the start 

point on the left-hand side of the beam to the 

end point with constant speed. Figure 2 shows 

that the deflection of the beam under moving 

load is sensitive to the speed and position of the 

moving load. At the same time, the maximum 

deflection for the simply supported Euler-

Bernoulli beam under moving load is 

approximately 𝑤 (
𝑋𝐹

𝐿
,
𝑋𝐹

𝐿
) = 1.58283𝑤𝑠𝑡 in 

𝑋𝐹

𝐿
= 0.576735 with the speed parameter 

0.443. Figure 3 shows the influence of variation 

of the acceleration parameters a0x on the 

deflections of the simply supported Euler–

Bernoulli beam for a moving load with initial 

speed 𝑣0𝑥 = 0.10L. It is shown that the 

acceleration plays an important role in the 
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dynamic characteristics of the moving load 

problem. 

From the curve for 𝑎0𝑥 = 0.5𝐿, the maximum 

deflection w(
XF

L
,
XF

L
) = 0.98507 𝑤𝑠𝑡 occurs 

when the load is located at XF/L=0.40654, 

while for 𝑎0𝑥 = 0.1𝐿, the maximum deflection 

becomes w(
XF

L
,
XF

L
) = 1.0268 wst, when the 

load is located at XF/L=0.58408

. 

 

Figure 2. The forced vibration part of the deflection Euler-Bernoulli beam (
𝐰(

𝑿𝑭
𝑳
,
𝑿𝑭
𝑳
)

𝐰𝐬𝐭
) for different speed 

parameters 𝛂 

 

Figure 3. The forced vibration part of the deflection Euler-Bernoulli beam (
𝐰(

𝐗𝐅
𝐋
,
𝐗𝐅
𝐋
)

𝐰𝐬𝐭
) for different 

acceleration parameters 𝐚𝟎𝐱 of moving load (𝒗𝟎𝒙 = 𝟎. 𝟏𝟎𝐋) 
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The two-dimensional contour graph of the 

simply supported Euler-Bernoulli beam 

(
w(

𝑋𝐹
𝐿
,
𝑋𝐹
𝐿
)

wst
) for an accelerating load with initial 

speed 𝑣0𝑥 = 0.15L and 𝑣0𝑥 = 0.90L are given 

in Figures 4 and 5, respectively. Figure 5 shows 

that the deflection curve shape tends to the left 

end when the acceleration decreases. Therefore, 

the maximum point of the deflection is 

depended on the increasing or decreasing 

acceleration. Also, the maximum deflection of 

the Euler-Bernoulli beam does not occur at the 

central point of the beam for all acceleration 

values. On the other hands, the acceleration 

value of load dominantly defines the dynamic 

deflection shape of the Euler-Bernoulli beam. 

By applying the present method, the influence 

of the speed and acceleration of the moving 

load is evaluated vibration characteristics of the 

simply supported Euler-Bernoulli beam. For 

this purpose, the Euler-Bernoulli beam is 

assumed with characteristics as follows: 

𝐾𝑊 = 0.2 𝜋4
𝐸𝐼

𝐿2
  𝜉𝑒 = 0.10 𝜉𝑖 =

0.10 

𝜙2 =
𝜔2𝜌 𝐴

𝐸𝐼
  𝑣 = 𝑣0𝑥 + 𝑎0𝑥𝑡 

 𝑋𝐹(𝑡) = 𝑣0𝑥𝑡 +
1

2
 𝑎0𝑥𝑡

2 

βR = βL = 0   βC = 1 

 

Figure 4. The forced vibration part of the deflection Euler-Bernoulli beam (
𝐰(

𝐗𝐅
𝐋
,
𝐗𝐅
𝐋
)

𝐰𝐬𝐭
) for different 

acceleration parameters 𝐚𝟎𝐱 of moving load (𝒗𝟎𝒙 = 𝟎. 𝟏𝟓𝐋) 
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Figure 5. The forced vibration part of the deflection Euler-Bernoulli beam (
𝐰(

𝐗𝐅
𝐋
,
𝐗𝐅
𝐋
)

𝐰𝐬𝐭
) for different 

acceleration parameters 𝐚𝟎𝐱 of moving load (𝒗𝟎𝒙 = 𝟎. 𝟗𝟎𝐋) 

Figure 6 shows the influence of variation of the 

acceleration parameters a0x on the deflections 

of the damped Euler–Bernoulli beam for a 

moving load with initial speed 𝑣0𝑥 = 0.10L. 

From the curve for 𝑎0𝑥 = 0.3𝐿, the maximum 

deflection w(
XF

L
,
XF

L
) = 0.811573 𝑤𝑠𝑡 occurs 

when the load is located at XF/L=0.59383, 

while for 𝑎0𝑥 = 0.1𝐿, the maximum deflection 

becomes w(
XF

L
,
XF

L
) = 0.812132 wst, when 

the load is located at XF/L=0.59239. The two-

dimensional contour graph of the damped 

Euler-Bernoulli beam (
w(

𝑋𝐹
𝐿
,
𝑋𝐹
𝐿
)

wst
) for a 

accelerating load with initial speed 𝑣0𝑥 =
0.15L and 𝑣0𝑥 = 0.90L are given in Figures 7 

and 8, respectively. In addition, the influence of 

the elastic coefficient of Winkler foundation is 

evaluated vibration characteristics of the simply 

supported Euler-Bernoulli beam under 

accelerated moving load. For this purpose, the 

Euler-Bernoulli beam is assumed with 

characteristics as follows: 

 𝐾𝑊 = 0.1 𝜋4
𝐸𝐼

𝐿2
− 0.5 𝜋4

𝐸𝐼

𝐿2
 𝜉𝑒 = 0.10

 𝜉𝑖 = 0 

𝜙2 =
𝜔2𝜌 𝐴

𝐸𝐼
  

𝑣

𝐿
= 𝑣0𝑥 + 𝑎0𝑥𝑡 𝑋𝐹(𝑡) =

𝑣0𝑥𝑡 +
1

2
 𝑎0𝑥𝑡

2 

𝑣0𝑥 = 0.10L βL = 0    βC = βR =
1/2 

Table 2 compares the deflection of the simply 

supported Euler–Bernoulli beam 

(𝑤(0.6𝐿,𝑋𝐹) 𝑤𝑠𝑡⁄ ) under moving load with 𝑎0𝑥 =
0.1𝐿, 0.2𝐿 on the partial elastic foundation. 
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Figure 6. The forced vibration part of the deflection of the damped Euler-Bernoulli beam (
𝐰(

𝐗𝐅
𝐋
,
𝐗𝐅
𝐋
)

𝐰𝐬𝐭
) for 

different acceleration parameters 𝐚𝟎𝐱 of moving load (𝒗𝟎𝒙 = 𝟎. 𝟏𝟎𝐋) 

 

 

Figure 7. The forced vibration part of the deflection of the damped Euler-Bernoulli beam (
𝐰(

𝐗𝐅
𝐋
,
𝐗𝐅
𝐋
)

𝐰𝐬𝐭
) for 

different acceleration parameters 𝐚𝟎𝐱 of moving load (𝒗𝟎𝒙 = 𝟎. 𝟏𝟓𝐋) 
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Figure 8. The forced vibration part of the deflection of the damped Euler-Bernoulli beam (
𝐰(

𝐗𝐅
𝐋
,
𝐗𝐅
𝐋
)

𝐰𝐬𝐭
) for 

different acceleration parameters 𝐚𝟎𝐱 of moving load (𝒗𝟎𝒙 = 𝟎. 𝟗𝟎𝐋) 

Table 2 presents that the deflection of the 

Euler–Bernoulli beam is more sensitive to the 

variation of the elastic coefficient of Winkler 

foundation. Figure 9 shows the influence of 

variation of the elastic coefficient of Winkler 

foundation on the deflections of the damped 

Euler–Bernoulli beam for a moving load with 

initial accelerate 𝑎0𝑥 = 0.10L. 

 
Figure 9. The forced vibration part of the deflection of the damped Euler-Bernoulli beam (

w(0.6𝐿,XF)

wst
) for 

different elastic coefficient of Winkler foundation (𝑎0𝑥 = 0.1L) 
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Table 2. The deflection of the Euler–Bernoulli beam (𝐰(𝟎.𝟔𝑳,𝑿𝑭) 𝐰𝐬𝐭⁄ ) under a moving load on partial elastic 

foundation 

𝐾𝑊 
𝑋𝐹
𝐿

 𝑎0𝑥 = 0.1𝐿 𝑎0𝑥 = 0.2𝐿 

0 

0.1 0.294147 0.326731 

0.3 0.798037 0.633518 

0.5 0.882019 1.08782 

0.7 0.899351 0.784643 

0.9 0.18823 0.155375 

0.1 𝜋4
𝐸𝐼

𝐿2
 

0.1 0.276366 0.305222 

0.3 0.752305 0.606656 

0.5 0.846282 1.02883 

0.7 0.854809 0.753439 

0.9 0.189359 0.16046 

0.2 𝜋4
𝐸𝐼

𝐿2
 

0.1 0.260277 0.285768 

0.3 0.710928 0.582368 

0.5 0.813958 0.975507 

0.7 0.814517 0.725257 

0.9 0.190394 0.165076 

0.3 𝜋4
𝐸𝐼

𝐿2
 

0.1 0.24565 0.268087 

0.3 0.673312 0.560303 

0.5 0.784581 0.927072 

0.7 0.777893 0.699676 

0.9 0.191346 0.169288 

0.4 𝜋4
𝐸𝐼

𝐿2
 

0.1 0.232295 0.251949 

0.3 0.638967 0.54017 

0.5 0.757765 0.882881 

0.7 0.744454 0.676353 

0.9 0.192226 0.173147 

0.5 𝜋4
𝐸𝐼

𝐿2
 

0.1 0.220053 0.237158 

0.3 0.607482 0.521727 

0.5 0.733189 0.842395 

0.7 0.713801 0.654999 

0.9 0.193043 0.176698 
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4. Conclusions 

This paper presents the Dynamic Green 

Function for the vibration of the damped Euler-

Bernoulli beam on the partial Winkler 

foundation under accelerated moving load. The 

method of Green functions is efficient when 

compared with other methods. The Green 

function yields exact solutions in closed forms. 

At the same time, the boundary conditions are 

embedded in the Green functions by the Green 

function method. The effect of the elastic 

coefficient of Winkler foundation, velocity and 

accelerate of load are determined. Finally, some 

numerical examples are shown to illustrate the 

efficiency of the new formulation based on the 

Dynamic Green Function.  
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