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Abstract:
Optimally minimizing delay times at signalized intersections can significantly improve both traffic flow and safety. 
However, most traffic flow optimizing tools do not measure the effect on safety. This study uses nonlinear program-
ming (NLP) algorithms to optimally minimize delay times and employs both Safety performance functions (SPFs) 
and empirical Bayes (EB) before-after methodology to measure the impact on safety presented as a Crash Modifica-
tion Factor (CMF). A crash modification factor (CMF) is a multiplicative factor used by transportation practitioners 
to compute the expected number of crashes at specific study site(s) after a countermeasure has been proposed or is 
implemented. Using 2013 traffic data from seventeen signalized intersections located in Virginia Beach, the results 
show that optimally minimizing intersection delay times can result in a safety improvement of approximately 26.46% 
that is a CMF of 0.735. This result is not conclusive, but the significance of the findings shows the need for further 
investigations and potential inclusion in the future editions of the Highway Safety Manual (HSM).
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1. Introduction
Minimizing delays at signalized intersections can sig-
nificantly improve traffic flow as well as safety. Accord-
ing to the Highway Capacity Manual [HCM, 2010], de-
lay is one of the indexes used to evaluate the level of 
service (LOS), and determining of traffic signal timings 
at signalized intersections. Both LOS and signal timing 
are measures of traffic flow effectiveness at signalized 
intersections.  Optimally minimized delays can be as-
sociated with efficient traffic progressions, reducing the 
number of necessary stoppages, traffic congestion and 
the likelihood of accidents. Objective analysis to vali-
date this presumption is lacking and even though the 
HSM (2010) states that treatments such as cycle length 
modification and improved signal coordination have 
unknown effects on accidents [Stevanovic, Stevanovic, 
and Kergaye, 2013].
It is demanding to decisively measure the influence of 
delay on safety at a signalized intersection because of:  
(1) the influence of other major accident causing factors 
such as geometrical, human, and weather factors that 
overshadow the delay effects; (2) the difficulty incurred 
capturing and recording accident data; and (3) often 
transportation practitioners work with only a subset of 
all accidents, usually those reported by enforcement of-
ficials and not all the accidents that occurred. 
The introduction of the HSM has prompted increased 
attention to safety studies and different ways to mea-
sure and quantify safety [Gross, Persaud, and Lyon, 
2010; Hauer, et al, 2012;   Tegge, Jo, and Ouyang, 
2010]. The need to objectively quantify safety using 
CMFs continues to attract research and may result 
in further understanding of the factors that influence 
safety on roadways. This study investigates the con-
cept at selected signalized intersections by using NLP 
algorithms, an optimizing mathematical process used to 
find a feasible extremum delay and the EB before-after 
methodology to estimate its effect on safety represented 
as a CMF.  
In practice, some improvements in safety measures 
such as (e.g. reducing the number of conflicts) may 
reduce traffic flow efficiency [Stevanovic, Stevanovic, 
and Kergaye, 2013]. To investigate the effect of opti-
mally minimizing delay at signalized intersections, this 
study also considers cycle length and LOS, because 

they are traffic flow parameters directly related to in-
tersection delay. 
The two main objectives of this study are to:
1. Optimally minimize the delay times at the selected 
signalized intersection, and 
2. Calculate the resultant CMFs. 
To achieve these objectives, this study uses statistical 
models to relate the number of accidents per year to 
corresponding delay time attribute. The significance of 
an attribute is based on a user-identified level-of-signif-
icance, α [Tegge, Jo and Ouyang, 2010], that measures 
the plausibility of the null hypothesis [Navidi, 2008] 
and usually ranges from 0.01 to 0.10 [Hauer, 1996]. 
A smaller α shows it is more difficult to declare an at-
tribute significant.  Accidents are very important and 
therefore a larger α is usually used so as to include more 
attributes in the model. The value of α is usually set to 
0.10 [Tegge, Jo, and Ouyang, 2010]. 

2. Literature Review
Delay is estimated as the sum of the approach uniform 
delay, the overflow plus random delay, and the initial 
queue delay. Literature Review It reflects driver dis-
comfort, frustration, fuel consumption, and lost travel 
time [HSM, 2010]. Traffic signal coordination and op-
timization are the most desirable cost effective [Park, 
Messer, and Urbanik II, 1999] means of reducing delay.
In transportation engineering, optimization pertains to 
the use of traffic or mathematical models to effectively 
minimize delay times. Criteria for model selection in-
clude “realistic traffic representation, adequate capac-
ity to incorporate most traffic management features, 
and ability to represent system variability” [Rouphail, 
Park, and Sacks, 2000]. Some transportation software 
that meet these requirements include CORSIMTM, 
VISSIMTM, Synchro® and TransModeler®. The tradi-
tional mathematical model used for optimization is the 
NLP because of its ability to minimize readily quan-
tifiable objectives, coordinate and accurately handle 
the process of nonlinearities and interactions, and its 
systematic ways of dealing with processing constraints 
[Biegler, and Rawlings, 1991].
 Although some studies have shown that there is a trade-
off between delay and safety at signalized intersections 
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[Zhang, and Prevedouros, 2003], efficient intersection 
traffic flow designs can considerably enhance both, es-
pecially in congested urban settings [Wong, Sze, and 
Li, 2007]. For example, if left-turning vehicles are per-
mitted to make a turn, they may experience shorter de-
lays, but have higher chances of an accident with the 
opposing traffic as they try to find a gap to negotiate 
the left-turn. Alternatively, if the left-turning vehicles 
are protected by signal timing the likelihood of acci-
dents decrease, but they may experience longer delays 
[Zhang, and Prevedouros, 2003]. Wong et al [2007] 
states that efficient design of traffic flow elements like 
signal phasing leads to equalization of traffic delays at 
different approaches, resolves conflicts between dif-
ferent streams, and can accommodate for variations in 
traffic volumes, thus enhancing safety.
Previously, practitioners applied crash reduction fac-
tors (CRF) to estimate the safety benefits of certain 
countermeasure(s). Currently, the HSM [2010] encour-
ages the use of CMFs instead. The manual also recog-
nizes that although important, the safety effects of traf-
fic flow parameters like delay and signal timing are not 
yet well understood.  CMFs for before and after condi-
tions are usually found by applying observational be-
fore and after studies, such as comparison group stud-
ies, and EB studies. 
In comparison studies, sample sets are taken from 
untreated site(s) and compared to similar, but treated 
site(s). Both samples are assumed to be equal in all as-
pects of crash causing factors except the treatment be-
ing studied. The CMF is then found by determining the 
ratio of the observed number of accidents in the after 
period to those in the before period. The number of ac-
cidents in the before period at the treatment site(s) is 
multiplied by this ratio to determine the expected ac-
cidents at the treatment group had there been no treat-
ment applied. However, comparison studies have a 
setback; such studies assume that both treated and un-
treated sites have the same attributes, and that there are 
no other safety mitigating factors affecting beyond the 
treatment. Realistically, this is difficult to achieve. Ad-
ditionally, treated sites are likely to be associated with 
higher number of accidents in the before period than 
untreated sites, hence benefit overestimation referred to 
as regression-to-the-mean (RTM) bias [Shahdah, Frank 

Saccomanno, and Persaud, 2014]. 
In the past 30 years, EB models have been used suc-
cessfully by other researchers to perform this type of 
evaluation [Elvik, 2008]. The EB studies use a more 
complex application that corrects for RTM the bias as-
sociated with comparison group studies by expressing 
the expected number of accidents before the treatment 
as a weighted function of the observed and predicted 
accidents at the treated sites in the before period with 
the assumption that the traffic volumes and geometric 
features are similar [Gross, Persaud, and Lyon, 2010; 
Hauer, 1995; Srinivasan, et al, 2008]. The predicted 
number of accidents is determined using Safety Perfor-
mance Functions (SPFs) that relate the accidents to the 
traffic and geometrical features used. Studies show that 
the best SPF distributions to be Poisson regression and 
negative binomial (NB) [Lord and Mannering, 2010; 
Persaud, and Lyon, 2007; Stamatiadis et al, 2008] be-
cause of their ability to deal with crash data character-
istics.

3. Methodology
This section employs both delay optimization and re-
sultant CMF assessment to measure safety impacts. 
NLP algorithms are used to analyze delay optimization 
and EB before-after studies to determine the resultant 
CMF. The flowchart in Figure 1 shows a step-by-step 
procedure in the delay optimization and the CMF de-
velopment. 

Optimization
The theory of optimization is an essential principle for 
evaluating of many complex decisions or allocation of 
problems. In its operational simplicity, optimization 
gives a certain degree of philosophical elegance that 
is hard to dispute [Luenberger, and Ye, 2010]. Here, a 
complex problem involving analysis of given interrelat-
ed variables is solved by focusing on a single objective 
function specifically designed to quantify performance, 
and measure the quality of the determined results. The 
objective function is either maximized or minimized 
subject to the given constraints. 
Finding the optimal values of decision variables x1, x2, 
…, xn in an NLP, can generally be expressed as follows:
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max(min)z= f (x1, x2, …, xn )
subject to g1 (x1, x2, …, xn )  (≤ , = , or ≥) b1

subject to g2 (x1, x2, …, xn )  (≤ , = , or ≥) b2

gm (x1, x2, …, xn )  (≤ , = , or ≥) bm                                                    (1)
Where f (x1, x2, …, xn ) or z is the NLP’s objective func-
tion, and g1 (x1, x2, …, xn )  (≤ , = , or ≥) b1, gm (x1, x2, …, 
xn )  (≤ , = , or ≥) bm are the NLP’s constraints. 
The feasible region for the NLP in equation 1 is the set 
of points (x1, x2, …, xn ) that fulfills the m constraints of 
the equation. Any point that is in the feasible region is 
taken as a feasible point, those outside are in-feasible. 
Any point 
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Figure 1. Delay optimization and CMF development procedure 

 
Optimization 
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Where f(x1, x2, …, xn) or z is the NLP’s objective function, and   g1 (x1, x2, …, xn)  (≤,=,or≥) b1,… gm (x1, x2, 
…, xn)  (≤,=,or≥) bm are the NLP’s constraints.  

The feasible region for the NLP in equation 1 is the set of points (x1, x2, …, xn) that fulfills the m  
constraints of the equation. Any point that is in the feasible region is taken as a feasible point, those outside 
are in-feasible. Any point �̅�𝑚 in the feasible region for which  𝑓𝑓(�̅�𝑚) ≥ 𝑓𝑓(𝑚𝑚)  when maximizing or 𝑓𝑓(�̅�𝑚) ≤
𝑓𝑓(𝑚𝑚) when minimizing holds for all points x in the feasible region is an optimal solution to the NLP 
[Winston, 2004].  
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where k is the dispersion parameter of the NB distribu-
tion that is assumed for the crash counts used in esti-
mating the SPF, and Pn is the predicted number of ac-
cidents for period of time n. k is estimated from the SPF 
calibration procedure. 
As discussed previously, SPF is part of the EB method-
ology and is used to determine the predicted number of 
accidents. SPF is regression statistical models relating 
observed or actual accident counts to their causing fac-
tors. There are several SPFs, but the two most accurate 
and common types are Poisson and NB models [Elvik, 
2008]. Accident data are discrete, non-negative, and 
sporadic; the Poisson regression model is the natural 
first choice for modeling [Poch and Mannering, 1996]. 
However, the Poisson model has a key limitation, which 
is the variance of the dependent variable is constrained 
to be nearly or equal to it’s meanwhile the variance of 
accident and traffic data is likely to be over dispersed 
and differ significantly from the mean [Tegge, Jo and 
Ouyang, 2010]. Hence, the correct model in such analy-
sis is the NB distribution formulated as follows:
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[HSM, 2010]. This study uses the EB before-after methodology to determine the resultant CMF because it 
has the ability to account for: (a) RTM effects due to sites experiencing randomly high short-term crash 
counts selected for treatment and show reduction in crashes afterwards, when the counts regress towards 
their true long-term mean and vice versa; (b) changes in traffic volumes, and (c) time trends in crash 
occurrence due to changes over time in factors like weather, human habits, and crash reporting practices 
[Gross, Persaud,  and  Lyon, 2010], and bias in site selection [Lan et al, 2009].  

In the EB before-after evaluation of a treatment effect, the change in crashes at a basic freeway 
segment is given by the sum of predicted estimates (PB) combined with the sum of the observed accidents 
(OB) in the ‘before’ period to obtain the expected number of accidents (EB) before the treatment, expressed 
as:  
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Where 𝑃𝑃 (𝑦𝑦𝑖𝑖) is the ‘predicted’ number of accidents, Γ is the gamma function, μ is the NB mean, and k is 
the dispersion parameter. The NB model allows the mean to differ from the variance such that 
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The form of the model equation for NB regression is the same as that of Poisson regression. The 
log of the outcome is predicted with a linear combination of the predictors’ variable as: 
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where α is the measure of the dispersion and can be 
estimated using the standard maximum likelihood tech-
niques. The appropriateness of the NB relative to the 
Poisson model is determined by the statistical signifi-
cance of α. If α is not statistically different from zero, 
the NB simply reduces to Poisson regression with 
varni=E(ni). If α is significantly different from zero, 
then the NB is adopted and the Poisson regression is 
inappropriate.
The form of the model equation for NB regression is 
the same as that of Poisson regression. The log of the 
outcome is predicted with a linear combination of the 
predictors’ variable as:
log(crash) = intercept + b1(delay) + b2(major AADT) + 
b3 (minor AADT)                                                           (6)

This implies that:
accidents=exp(intercept+b1(delay)+b2(major AADT)+b3(minor AADT))      (7)
The expected accident frequency found in Equation 3 
is used in the development of CMFs as published in the 
FHWA guide for developing CMF (4).  The develop-
ment of CMF is presented in several steps. In the initial 
step, the expected number of accidents in the ‘after’ pe-
riod in the treatment group that would have occurred 
without treatment, (EA) is
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would have occurred without treatment, (EA) is 
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where EB, and PB are as previously defined, and PA, is the predicted number of crashes or sum of SPF 
estimates in the ‘after’ period. The variance of EA is estimated as 
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Finally, the CMF is approximately equal to the ‘after’ period accident counts divided by the EA. It 
is an approximate because of a small adjustment based on EA and with the variance expressed as  
 

𝐶𝐶𝐶𝐶𝐶𝐶 =
(𝑂𝑂𝐴𝐴

𝐸𝐸𝐴𝐴
)

1 + (𝑣𝑣𝑐𝑐𝑐𝑐(𝐸𝐸𝐴𝐴)
𝐸𝐸𝐴𝐴

2 )
 

(10) 
 

𝑣𝑣𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶2 [
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(11) 
 
Where OA is the sum of the observed number of accidents in the ‘after’ period for the treatment sites and 
EA is as previously described.  
 
Data Analysis and Result Interpretation 

This study analyzes a set of seventeen signalized intersections located in Virginia Beach to estimate a 
CMF for optimally minimized delays. These seventeen study sites and their geographical locations are 
presented in Figure1.  In Figure 1, thirteen intersections are marked in green and four in red. As this study 
will show later, the optimized delay times for those in green are less than the city’s operational delay times 
while those marked in red are higher. The intersections in figure 1 are numbered from 1 to 17. The identities 
of these intersections are presented in figure 1 together with their corresponding numbers. 

                                                        (8)

where EB, and PB are as previously defined, and PA, is 
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Where OA is the sum of the observed number of accidents in the ‘after’ period for the treatment sites and 
EA is as previously described.  
 
Data Analysis and Result Interpretation 
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CMF for optimally minimized delays. These seventeen study sites and their geographical locations are 
presented in Figure1.  In Figure 1, thirteen intersections are marked in green and four in red. As this study 
will show later, the optimized delay times for those in green are less than the city’s operational delay times 
while those marked in red are higher. The intersections in figure 1 are numbered from 1 to 17. The identities 
of these intersections are presented in figure 1 together with their corresponding numbers. 
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Where OA is the sum of the observed number of acci-
dents in the ‘after’ period for the treatment sites and EA 
is as previously described. 

Data Analysis and Result Interpretation
This study analyzes a set of seventeen signalized 
intersections located in Virginia Beach to estimate a 
CMF for optimally minimized delays. These seven-
teen study sites and their geographical locations are 
presented in Figure1. In Figure 1, thirteen intersec-
tions are marked in green and four in red. As this 
study will show later, the optimized delay times for 
those in green are less than the city’s operational 
delay times while those marked in red are higher. 
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The intersections in figure 1 are numbered from 1 
to 17. The identities of these intersections are pre-
sented in figure 1 together with their corresponding 
numbers.
Both the major and minor entering ADTs presented in 
table 1 were obtained from the city of Virginia Beach’s 

traffic count database. Also obtained from the city were 
the signal delay times per vehicle in seconds, and the 
number of observed/reported accidents per year. The 
before and after delay optimization conditions are first 
established by this study before finally measuring its 
impact on safety. 

 
           SOURCE: Google Maps  

Figure 1. Study site geographical locations 
 

Table 1. Study site identities and average daily traffic (ADT) volumes for 2013 
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Before Delay Optimization Period
The before period, describes the actual operational con-
ditions at the study intersections prior to the optimiza-
tion of delay times. Table 2 presents the cycle lengths, 
delay times and level of services for these intersections 
prior to delay time optimization. 
Intersections with LOS F (delay times ≥ 80 s/veh) are 
not considered for analysis by this study because in this 
state, the roadway is considered to be failing [Roess, 
Prassas, and McShane, 2011]. In this state, there is a 
breakdown in vehicular flow, the arrival flow rate tem-
porally exceeds the departure rate hence the limitation 
to mathematically describe the operational conditions. 

Using the actual delay times and number of accidents 
(before the optimization period), NB regression analy-
sis was performed and the resulting parameters are pre-
sented in table 3.
Column 1 of Table 3 shows each of the variables used in 
the analysis. Column 2 shows the NB regression coef-
ficients for each of the variables along with their related 
standard errors, Wald chi-square values, and p-values 
for each of the coefficients in columns 4, 5, 6, and 7 
respectively. All the variables are statistically signifi-
cant at a 0.05 level. The coefficients indicate that as the 
delay (s/veh), major entering ADT, and minor entering 
ADT increase, the number of accidents increase too.  

Table 2. Study site operational conditions in the before period
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This is reasonable because increased delay together 
with increased volumes may lead to increased queues 
and conflicts, hence the higher chances of accidents/
incidences. 
The variable delay has a coefficient of 0.033, which 
shows that for each one-unit increase in delay, the ex-
pected log count of the number of accidents increases 
by 0.033. The dispersion coefficient, which does not 
include zero (0.098), suggests that the NB model form 
is appropriate than Poisson. An estimate larger than 
zero suggests over-dispersion (variance larger than the 
mean) and an estimate less than zero indicates under-
dispersion. 

After Delay Optimization Period
Having established the before period conditions, the 
next step involves establishing the after conditions. The 
after period conditions describe the projected accidents 
and the predicted accidents after delay optimization. 
To determine the observed accidents (OA) in the after 
period, a relationship between delay (s/veh) and num-
ber of accidents is established by conducting a simple 
linear regression using both accident and delay data 
from thirty-nine signalized intersections for the year 
2013. Twenty-eight observations from Virginia Beach 
and eleven observations from Chesapeake both cities 
located in the Hampton Roads metropolitan region. The 

resulting correlation relationship is presented in figure 4 
and shows that as the delay times (s/veh) increases, the 
number of accidents increases too. This is reasonable 
because an increase in traffic flow may also increase the 
chances of accidents occurring.
As presented in figure 2, the relationship between the 
number of accidents and delay can be expressed as 
No. of Accidents / yr. = (0.1508*Delay) – 0.9136.  The 
strong relationship implied by the fitted line plot is sup-
ported by is an R-square value of 85.4% correlation be-
tween the number of accidents and delays at the study 
sites.
To determine the optimal minimum delay time, each 
lane group delay was evaluated separately and then 
weighted progressively as presented in the HCM (2010) 
to determine the overall intersection delay using NLPs 
as discussed in the methodology section. Using these 
found delay times and the number of accidents found 
from the linear regression evaluation, NB regression 
analysis was performed and the resulting parameters 
are presented in table 4 as follows:
Column 1 of Table 3 shows each of the variables used in 
the analysis. Column 2 shows the NB regression coef-
ficients for each of the variables along with their related 
standard errors, Wald chi-square values, and p-values for 
each of the coefficients in columns 4, 5, 6, and 7 respec-
tively. All the variables are statistically significant at a 
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regression coefficients for each of the variables along with their related standard errors, Wald chi-square 
values, and p-values for each of the coefficients in columns 4, 5, 6, and 7 respectively. All the variables are 
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higher chances of accidents/incidences.  
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the expected log count of the number of accidents increases by 0.033. The dispersion coefficient, which 
does not include zero (0.098), suggests that the NB model form is appropriate than Poisson. An estimate 
larger than zero suggests over-dispersion (variance larger than the mean) and an estimate less than zero 
indicates under-dispersion.  
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0.05 level. The coefficients indicate that as the delay (s/
veh), major entering ADT, and minor entering ADT in-
crease, the number of accidents increase too.  This is rea-
sonable because increased delay together with increased 
volumes may lead to increased queues and conflicts, 
hence the higher chances of accidents/incidences. 
The variable delay has a coefficient of 0.033, which 
shows that for each one-unit increase in delay, the ex-
pected log count of the number of accidents increases 
by 0.033. The dispersion coefficient, which does not in-

clude zero (0.039), suggests that the NB model form is 
appropriate than Poisson. 
With the actual accidents in the before period and calcu-
lated accidents in the after period determined, the next task 
was to determine the predicted accidents for both periods. 
As discussed in the methodology section, the predicted ac-
cidents for both periods are determined using SPFs. The 
SPFs for both periods were found using NB distributions 
shown in tables 3 and 4. The determined predicted acci-
dents for both periods are presented in table 5.

To determine the optimal minimum delay time, each lane group delay was evaluated separately and 
then weighted progressively as presented in the HCM (2010) to determine the overall intersection delay 
using NLPs as discussed in the methodology section. Using these found delay times and the number of 
accidents found from the linear regression evaluation, NB regression analysis was performed and the 
resulting parameters are presented in table 4 as follows: 
 

Table 4.  Negative binomial parameter estimates in the after delay optimization period 
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Model: (Intercept), Major entering ADT, Minor entering ADT, Delay (s/veh) 

 
Column 1 of Table 3 shows each of the variables used in the analysis. Column 2 shows the NB 

regression coefficients for each of the variables along with their related standard errors, Wald chi-square 
values, and p-values for each of the coefficients in columns 4, 5, 6, and 7 respectively. All the variables are 
statistically significant at a 0.05 level. The coefficients indicate that as the delay (s/veh), major entering 
ADT, and minor entering ADT increase, the number of accidents increase too.  This is reasonable because 
increased delay together with increased volumes may lead to increased queues and conflicts, hence the 
higher chances of accidents/incidences.  

The variable delay has a coefficient of 0.033, which shows that for each one-unit increase in delay, 
the expected log count of the number of accidents increases by 0.033. The dispersion coefficient, which 
does not include zero (0.039), suggests that the NB model form is appropriate than Poisson.  

With the actual accidents in the before period and calculated accidents in the after period 
determined, the next task was to determine the predicted accidents for both periods. As discussed in the 
methodology section, the predicted accidents for both periods are determined using SPFs. The SPFs for 
both periods were found using NB distributions shown in tables 3 and 4. The determined predicted accidents 
for both periods are presented in table 5. 
  

Table 4.  Negative binomial parameter estimates in the after delay optimization period

 
 

Table 5. Actual, calculated, and predicted accidents for both before and after periods 
 

Table 5 shows actual, calculated and predicted accidents at each intersection for both periods. The 
total for each of the four categories are also presented. In 2013, the total actual accidents that occurred in 
the before period is 83, the SPF predicted accidents is 74, the calculated accidents that occurred in the 
after period is 71, and the SPF predicted accidents is 87.  
 
Crash Modification Factor – Empirical Bayes Before-After  

Using the results presented in table 5, and following the steps presented in the methodology section, 
the corresponding CMF is estimated and presented in table 6. Table 6 also presents the dispersion factor, 
weight factor, EB, the ratio of the after SPF to the before SPF accident estimates, EA, and its variance. These 
are important values used to estimate the CMF. 
  

Table 5. Actual, calculated, and predicted accidents for both before and after periods
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Table 5 shows actual, calculated and predicted accidents 
at each intersection for both periods. The total for each 
of the four categories are also presented. In 2013, the 
total actual accidents that occurred in the before period 
is 83, the SPF predicted accidents is 74, the calculated 
accidents that occurred in the after period is 71, and the 
SPF predicted accidents is 87. 

Crash Modification Factor – Empirical Bayes Be-
fore-After 
Using the results presented in table 5, and following 
the steps presented in the methodology section, the cor-
responding CMF is estimated and presented in table 
6. Table 6 also presents the dispersion factor, weight 
factor, EB, the ratio of the after SPF to the before SPF 
accident estimates, EA, and its variance. These are im-
portant values used to estimate the CMF.

Table 6. Crash Modification Factors for minimized delays 
at signalized intersections

 
Table 6. Crash Modification Factors for minimized delays at signalized intersections 

 

 
As shown in Table 6, the EB estimated CMF is 0.735 with a standard error of 0.012. The standard 

error (square root of the variance) is used to assist in CMF certainty check. At 95% confidence interval, the 
CMF expected range is 0.520 to 0.950. At 95% confidence level it can be interpreted that the number of 
accidents will reduce by approximately 26.46% (1 – 0.735) when the delays at the study sites are optimally 
minimized.  

 
4. Conclusions and Recommendations 

This study has estimates a CMF for optimally minimized delays at signalized intersections and has 
also to show that there is a need for such CMFs. This study, therefore concludes that at signalized 
intersections: (1) traffic flow parameters, such as delays may have significant influence on both traffic flow 
efficiency and safety, and (2) by optimally minimizing delay times may improve safety by approximately 
26.46%. 

The models presented are specific; they have been used before, and are appropriate to be used 
elsewhere. This study recommends that the sample size be increased to find more accurate and appropriate 
results. Furthermore, although this study provides the estimated safety factor for optimally minimizing 
delay, more research is needed to precisely understand how delay affects roadway safety. As technology 
for counting vehicles and recording traffic incidences becomes more familiar and improved, appropriate 
CMFs should be developed. As a result, this may lead to the potential inclusion of traffic flow SPFs and 
CMFs in future HSM editions.  

Improved knowledge on this topic could lead to efficient traffic planning and control of present and 
future transportation facilities, hence improving safety by: (1) better understanding of what facilities and 
conditions that are safer for drivers, (2) determining how other variables such as road surface condition, 
human behavior, and weather conditions may influence roadway safety, and (3) better understanding of the 
already identified variables. 
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