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Abstract 
Nowadays, a significant part of goods and passengers are transported on suburban highways with mainly high-

speed vehicles. Hence, these highways are very prone to accidents with different injuries. Due to the high fatality 

or severe physical/mental injury rates caused by car crashes, analyzing these accident-prone areas and identifying 

the factors affecting their occurrences is crucial. The specific objective of the study was to compare Chi-square 

Automatic Interaction Detector (CHAID), Classification and Regression Tree (CART), C4.5 and C5.0 decision 

tree data mining classification algorithms in building classification models for the fatality severity of 2355 fatal 

crash data records during 2007-2009 occurred in the roadways of 8 states in the USA. The results were evaluated 

using the accuracy metrics such as overall accuracy, kappa rate, precision, recall, and F-measure. The 

investigations confirmed that C5.0 had the best performance with the overall accuracy, and kappa rates of 94% 

and 92%, respectively. Additionally, classified fatality severity levels of the crashes were proposed for each 

algorithm to generate risk maps on the roads, to create potential accident risk spots. Decision tree models can be 

used for real-time data to find invariants in the tree over a period of time, which would be beneficial for 

policymakers. 
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1. Introduction 

According to the World Health Organization 

(WHO), traffic accidents are among the top 

eight causes of death in the world. Up to 1.2 

million people are killed in accidents 

worldwide each year, and 20-25 times as many 

are seriously injured [World Health 

Organization, 2018]. Among the various 

infrastructures of a country, roads are of great 

importance in the transfer of goods and 

passengers. In order to manage and reduce 

accidents and increase safety in a suburban 

road, it is necessary to find out when and where 

it has happened. By modeling accident hotspots 

to identify the factors affecting the occurrence 

of accidents, it is possible to make a valuable 

contribution to reducing the severity of 

accidents and improving road safety with the 

identification of these points. Crash factors can 

be included into multiple categories such as 

Driver-related (e.g., physical and mental 

disabilities, improper driving skills, careless 

attention to traffic signs, alcohol/drug use, 

tiredness, using a cell phone, not wearing a seat 

belt, etc.), Vehicle-related (e.g., the vehicle 

model and its technical defects), 

Environmental-related (e.g., weather situation, 

light conditions and the land use of the area) 

and Road-related (e.g., the number of lanes, 

slope, curvature, surface condition, speed limit, 

intersection types, etc.) [Effati, Thill and 

Shabani, 2015]. The accumulation of several 

factors in one place causes an increase in the 

rate of accidents. In these areas, which are 

called critical points, accidents occur with 

greater intensity or rate [Thakali, Kwon and Fu, 

2015]. By analyzing accidents, critical points 

and their relationship between various factors 

can be discovered [Blazquez and Celis, 2013]. 

As traffic accidents and their location and time 

are unpredictable, forecasting them is important 

to reduce their happening and subsequent 

damages. Accordingly, prediction models have 

been developed to improve road infrastructure 

safety management [Lee et al. 2020]. Data 

mining is referred to as the knowledge 

discovery in data and is one of the most widely 

used techniques for most engineers and 

business people [Chang and Wang, 2006]. 

Various methods such as classification, 

clustering, association rule mining, etc. are 

considered as data mining techniques. Ample 

research has been undertaken into the use of 

various methodologies including regression, 

statistical and, machine learning models to 

inspect injury severity outcomes and the fatality 

risk. Decision trees have been used more 

recently, as they provide an explanation 

together with an accurate, reliable and, quick 

response. In this study, the main objective is to 

compare CHAID, C4.5, C5.0 and, CART 

algorithms, as four popular decision trees to 

classify fatal accidents and assess their 

performance based on different accuracy 

metrics. Moreover, Risk map generation is 

applied for each method to identify high-risk 

areas and prevent future accidents in the related 

hotspots. The proposed methodology could be 

used to determine the best classifier in road 

safety management. The rest of the paper is 

organized as follows: Section 2 gives a 

summarized explanation about the most 

relevant research on studying crash severity. 

Section 3 introduces the study area and 

describes detailed information about the fatality 

severity and crash-related variables. The main 

concepts of classification methods and 

evaluation metrics are given in section 4. The 

results of predictive models are presented in 

section 5. Important findings and possible ideas 

for future research are discussed in section 6. 

Finally, the concluding remarks are illustrated 

in section 7. 

2. Literature Review 

This section expands some comparative studies 

related to data mining in road accidents by 

means of different algorithms, mainly including 

decision trees. A considerable number of 
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studies have been conducted to evaluate 

different methods in crash analysis in order to 

modulate crash severity levels, reengineer 

environmental, road, and vehicle factors, and of 

course, reduce fatality/injury rate. Related to 

this field, machine learning-based models have 

been developed to estimate the results of 

accidents. Delen et al. [Delen et al. 2017] used 

a survey to model the relationships between 

various levels of injury severity and crash 

factors. They applied numerous 

experimentation with four top prediction 

models including Neural Networks (NN), 

Support Vector Machines (SVM), C5.0 tree, 

and Logistic regression (LR) on a nationwide 

data collection. According to the results, SVM 

was the most accurate classifier with an 

accuracy rate of 90.41% followed by the C5.0 

tree with an accuracy of 86.61%. In the final 

part of their research, the sensitivity analysis 

results revealed that factors like wearing a seat 

belt, manner of collision, ejection from the car, 

and drug use were the most important variable 

affecting accident occurrence. Zhang et al. 

[Zhang et al. 2018] compared the prediction 

accuracy and variable importance of statistical 

and machine learning methods with the Florida 

crash dataset in the United States at freeway 

diverge areas. RF as a mostly analyzed method 

was proved to outperform the other classifiers. 

They stated that machine learning methods can 

predict better than statistical methods, as it is 

unnecessary to make presumptions about the 

relationship between the dependent and 

independent variables and the data distribution. 

Based on the dataset of the critical expressways 

in Seoul, South Korea, machine learning 

methods including Artificial Neural Network 

(ANN), Classification and Regression Tree 

(CART), and Random Forest (RF) were used to 

assess their powers and weaknesses [Lee et al. 

2020]. RF was found to produce the most 

accurate results in terms of mean squared error 

(MSE) and root mean squared error (RMSE). 

According to [Xing et al. 2020], toll plazas with 

both electronic and manual toll collection 

increase the risk of vehicle collision because of 

lane-change behaviors. Thus, the authors 

conducted a comparative study of logistic 

regression (LR) and five non-parameter models 

to examine the vehicle collision risk. 

Interestingly, the results demonstrated that 

ANN did not outperform LR unlike the other 

methods, which is in contrast with [Zhang et al. 

2018] results. Since the study explained here 

focuses on traffic accident analysis with “tree-

based” algorithms, the literature in this section 

will be mostly specific to the relevant works in 

this particular area.  Among different 

approaches for studying the injury severity of 

accidents, decision trees are being more 

extensively used; because they are easily 

understandable and yield more productive 

results [Ahmed, Rizaner and Ulusoy, 2018]. 

Apart from all the crash-related factors, the 

manner of collision affects the fatality rate. In 

view of this, Shanthi and Ramani [Shanthi and 

Ramani, 2011] classified a total number of 

37259 U.S. traffic accident records in 2007 to 

mine vehicle collision patterns with algorithms 

including Naïve Bayes, C4.5, CART, ID3, cost-

sensitive decision tree, and random tree. The 

results indicated that the random tree achieved 

the highest accuracy of 87% among the other 

algorithms. Oña et al. [Oña, López and Abellán, 

2013] examined the accuracies obtained by 

ID3, C4.5 and, CART methods in a 19-variable 

dataset of rural highway accidents in Spain. 

They claimed that CART, followed by C4.5 and 

ID3 obtained accuracies of 55.87%, 54.16%, 

and 52.72%, respectively. Mansouri and Kargar 

[Mansouri and Kargar, 2014] made an analysis 

of 10000 accidents from 2011 to 2013 in 

Isfahan province, Iran with CART, C5.0, 

CHAID, and the quick unbiased efficient 

statistical (QUEST) trees. They found that out 

of the mentioned methods, the C5.0 tree out-

performed the other decision trees with an 
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accuracy rate of 70.18%, while CART had the 

worst prediction on test data with an accuracy 

of 43.98%. Bahiru et al. [Bahiru et al. 2018] 

employed the J48, ID3, CART, and Naïve 

Bayes classification algorithms on 3000 

records of UK traffic accident repository to 

predict the accident severity and find out the 

most significant factors. Based on their 

experimental results, J48 classifier was the 

most accurate prediction model with an 

accuracy of 96.3%. Yuan et al. [Yuan et al. 

2020]  established C5.0, CHAID and CART 

decision trees to identify high-influence factors 

on the severity of side right-angle collision 

accidents. Apart from C5.0 better performance 

with an accuracy of 61.9%, drunk driving was 

found to be the most important factor followed 

by weather conditions and over speeding. 

3. Data Description 

The Fatality Analysis Reporting System 

(FARS) database is a census of all fatal crashes 

in the U.S. which covers crashes that lead to at 

least one fatality within thirty consecutive days 

from the time of the crash. FARS is directed by 

the National Center for Statistics and Analysis 

(NCSA), which is a component of the National 

Highway Traffic Safety Administration 

(NHTSA) [Fatality Analysis Reporting System, 

2019]. NHTSA has an agreement with an 

agency in each state to provide information on 

all fatal crashes in the state, which includes 

driver, vehicle, roadway, and environmental 

factors and crash characteristics to represent the 

crashes and their events. 

FARS data are obtained from multiple states’ 

documents, such as police crash reports, death 

certificates, state vehicle registration and driver 

licensing files, and medical service reports. The 

FARS data elements are coded from these 

documents by the analysts by means of a 

manual with written instructions [United States. 

National Highway Traffic Safety 

Administration, 2006]. After the data file is 

created, quality checks are performed to 

improve the accuracy of the data. The FARS 

data are generally reliable and complete, and 

they are available free online. 
The FARS data for the current study is sourced 

from the FARS database for the year 2007. In 

this year, a total of 41,059 people was killed in 

near 6,000,000 police-reported motor vehicle 

traffic crashes throughout the USA. Here, the 

dataset contains fatal crashes that occurred in 

the roadways (see Figure 1) connecting eight 

eastern U.S. states (see Figure 2), namely 

Virginia, West Virginia, Kentucky, Tennessee, 

North Carolina, South Carolina, Georgia, and 

Alaska. A total of 2,355 records from 2007 to 

2009 (vehicle crashes only; neither pedestrian 

nor bicycle) was collected. This dataset was 

chosen for the study, mainly due to including 

adequate features and accessibility for the 

analysis. 

 
Figure 1. The Study Area of Eight Eastern US 

States 

 
Figure 2. The Study Area of Highway Crashes, 

with North American 1983 Geographic 

Coordinate System 
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Table 1. Description of Variables 

Category Abbreviation Description Details 

Driver factor DRUNK_DR 

Number of 

Drunk 

Drivers in 

Crash 

Range 0-3 

Environmental 

factors 
WEATHER 

Atmospheric 

Condition 

1 Clear/Cloudy (No Adverse Conditions) 

2 Rain 

3 Sleet (Hail) 

4 Snow or Blowing Snow 

5 Fog, Smog, Smoke 
 

 LGT_COND 
Light 

Condition 

1 Daylight 

2 Dark - Not Lighted 

3 Dark but Lighted 

4 Dawn 

5 Dusk 
 

Road factors JUNCTYPE 
Relation to 

Junction 

1 Non-Junction (Non-Interchange) 

2 Intersection (Non-Interchange) 

3 Intersection Related (Non-Interchange) 

4 Driveway, Alley Access, etc. (Non-Interchange) 

5 Entrance/Exit Ramp Related (Non-Interchange) 

6 Rail Grade Crossing (Non-Interchange) 

7 Crossover-Related (Non-Interchange) 

8 Driveway-Access Related 

10 Intersection (Interchange Area) 

11 Intersection Related (Interchange Area) 

12 Driveway Access (Interchange Area) 

13 Entrance/Exit Ramp Related (Interchange Area) 

14 Crossover-Related (Interchange Area) 

15 Other location in Interchange (Interchange Area) 
 

 NO_LANES 
Number of 

Travel Lanes 
Range 1-7 

 SPEED Speed Limit Range 25-70 (mph) 

 ALIGNMENT 
Roadway 

Alignment 

1 Straight 

2 Curve 
 

 PROFILE 
Roadway 

Profile 

1 Level 

2 Grade 

3 Hillcrest 

4 Sag 
 

 PAVE_TYPE 
Roadway 

Surface Type 

1 Concrete 

2 Blacktop, Bituminous, or Asphalt 
 

 SUR_COND 

Roadway 

Surface 

Condition 

1 Dry 

2 Wet 

3 Snow or Slush 

4 Ice/Frost 

5 Sand, Dirt, Mud, Gravel 

6 Water (standing or moving) 
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The factors used in this study were mainly 

based on the opinion of experts, and they were 

common in similar studies. Three sets of the 

driver, environmental, and road factors were 

extracted from the data. The detailed 

information description on the crash factors is 

shown in Table 1. For the fatal occurrences, a 

discrete variable was created to represent the 

fatality severity of these crashes based on the 

death of road users, as seen in Table 2. The ratio 

of training to validating and testing was chosen 

as 70% to 30%, respectively.

Table 2. Fatality Severity Level of Crashes in the Dataset 

Fatality Severity 

Level 
Definition 

Train Test Total 

Freq. Ratio Freq. Ratio Freq. Ratio 

Level 0 No-crash 329 20% 142 20% 471 20% 

Level 1 1 person killed 444 27% 184 26% 628 27% 

Level 2 2-4 people killed 515 31% 216 31% 731 31% 

Level 3 
More than 4 people 

killed 
360 22% 165 23% 525 22% 

No-crash points were also included in the 

dataset to recognize safe locations with no 

crashes, set as Level 0 containing 20% of the 

whole dataset. From least severe to most severe 

fatal crashes with their frequencies within the 

dataset: Level 1 Led to the death of one person 

(27%), Level 2 Led to the death of between two 

and four people (31%), and Level 3 Led to the 

death of more than four people. 

4.  Methodology 

The objective of the study is to build and 

compare the performance of four decision tree 

algorithms. At first, the classification models 

were applied to the training set to build the 

hierarchical structures for predicting the test 

data. Then the prediction results were evaluated 

based on the confusion matrices and five 

accuracy measures. The programming 

language R was used for the whole process. 

4.1. Classification Models 

For the classification process, CHAID, C5.0, 

C4.5, and CART were used. CHAID only deals 

with categorical data and compared to the other 

methods, it uses a different measure to select 

input variables. C5.0 handles various data types 

and function fast, and it is suitable for big 

datasets. CART is able to select the most 

discriminatory factors which lead to less 

computation.  

4.1.1. CHAID Tree 

CHAID stands for Chi-square Automatic 

Interaction Detector. It is a decision tree 

technique created by V.Kass [Kass, 1980]. 

CHAID develops a pruned non-binary tree with 

only categorical variables based on Chi-square 

variable independence test (
2 ) , as shown in 

Equation (1) [Lin and Fan, 2019]: 
2

2

1 1

( )l k
ij ij

i j ij

x E

E


 


  

(1)                                                                                              

where 
ijx  is the observed frequency and 

ijE  is 

the expected frequency. As the test works with 

nominal data, it uses frequencies rather than 

means or variances. It is also more beneficial 

when dealing with large size of data, because of 

generating multiple splits. The tree generation 

can be divided into three phases: 1. A Chi-

square test is performed to determine important 

independent variables. 2. The splitting process 

is started using the independent variables with 

the smallest p-values. If this p-value is less than 

or equal to the alpha4 parameter specified by 

the user, the node is split. Otherwise, the node 

is considered a terminal node. The separation of 

the nodes is continued until there is no 

independent variable with the smallest p-value 

and then the terminal node is reached. 3. The 

first phase is repeated until all the subgroups of 
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the tree are processed [Susanti et al. 2017] . If 

the p-value is larger than the alpha2 parameter 

for a pair of nodes with the largest p-value, the 

pair is merged into a single category. If this new 

category consists of three or more nodes, a 

binary split will be formed if the p-value is the 

smallest and not larger than the alpha3 

parameter. These user-specified parameters are 

determined during the training process. 

4.1.2. C5.0 Tree 

C5.0 is an improved version of the C4.5 tree, 

which is also an extension of the ID3 algorithm 

developed by Quinlan [Quinlan, 1986]. The 

algorithm uses information gain as the splitting 

criterion and gives a binary or multi branches 

tree. In comparison with C4.5, C5.0 accounts 

for missing values, dates, times, and ordered 

variables. Moreover, it has a faster functionality 

and less memory consumption. The tree 

structure uses boosting, i.e. many generated 

decision trees are combined to improve the 

prediction. A variable with the highest 

information gain is chosen as the splitting 

variable of the root node. Then the algorithm is 

recursively applied to each branch to build the 

nodes and branches. In order to define 

information gain, entropy must be introduced 

first. Entropy is an impurity measure in the 

dataset, defined as Equation (2) [Adhatrao et al. 

2013]: 

2
1

( ) log
k

k k
d

Ent D p p


   (2) 

where D  refers to the train data and kp  is the 

probability that an item in the train data belongs 

to class k . If the data consists of just one class 

( k =1), then kp  is 1 and the entropy would be 

zero. Therefore, the entropy for a homogeneous 

dataset would be minimized. As mentioned 

before, to minimize the tree depth, an optimal 

variable is needed to split the tree node, which 

can be implied that the variable with the most 

entropy reduction is the ideal choice. According 

to Equation (3), the information gain for each 

variable can then be defined as the difference 

between the entropy of the dataset and the 

weighted sum of the entropy from the data 

subsets [Y. Wang et al. 2017]: 

1

( , ) ( ) ( )

V
V

V

v

D
Gain D a Ent D Ent D

V

  
 

(3)  

where D  is the number of train data, a  is a 

variable in the dataset with V different values, 

VD is the samples in every value, and 
VD  is 

the number of these samples. Three parameters 

are optimized after the training process: 1. The 

number of boosting iterations called “trials”. 2. 

A logical value whether to decompose the tree 

into a rule-based model or not, denoted as 

“model”. 3. Another logical value whether to 

use feature selection or not, denoted as 

“winnow”. 

4.1.3. C4.5 Tree 

This algorithm is another decision tree 

generator developed by Quinlan [Quinlan, 

1993]. C4.5 was proposed as an extension of 

Quinlan’s ID3 algorithm, as it is sensitive to 

variables with so many values [Hssina et al. 

2014]. The variable with the most effective data 

splits into classes is chosen by C4.5 to build the 

parent node. The process is then repeated for 

each branch of the tree until having the same 

class for all samples in the branch. The 

algorithm determines the gain ratio for variable 

splitting. It normalizes the information gain by 

the information needed to determine the class 

for an instance in the dataset, which is called the 

split entropy [Mienye, Sun and Wang, 2019]. 

This can be calculated as follows: 

2
1

( , ) .log

V V
V

v

D D
SplitInfo D a

D D

   (4)                

According to Equation (4), the gain ratio for 

each variable can then be defined as follows: 

( , )
( , )

( , )

Gain D a
GainRatio D a

SplitInfo D a
  (5)                

During the training process of the tree, two 

parameters are tuned: pruning confidence (C) 

and a minimum number of instances (M). The 
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former calculates an upper bound on error rate 

at the leaf, which is used to enhance the 

performance and prevent overfitting by 

removing unnecessary nodes. The latter 

enforces a minimum size of instances per node 

in order to fit the tree. 

4.1.4. Classification and Regression Tree 

Classification and Regression Tree (CART) is 

one of the widely used non-parametric data 

mining techniques which can analyze data with 

various independent quantitative or qualitative 

variables. CART can be a sturdy model to 

analyze complex tasks in a simple hierarchical 

form and discover rules [Choi et al. 2020]. 

Problems like the way of splitting each node, 

determining the completeness of a tree, and 

giving the terminal nodes a class label are 

noticed in the algorithm. CART uses a top-

down partitioning with selecting the most 

suitable variable to split the data into two 

groups at the root node (the parent node), such 

that the class labels in each group are as 

homogeneous as possible. Then, splitting is 

recursively applied to each group [Rovšek, 

Batista and Bogunović, 2017]. The Gini Index 

(GI) is used for CART implementation in R as 

the splitting criterion. It measures the degree of 

a particular randomly chosen item of data being 

wrongly classified, calculated in Equation (6) 

[Wang and Li, 2019]: 

2

1

1
n

i
i

GI p


   (6)                

where ip  is the relative frequency of class 𝑖 in 

the dataset. During the training process, an 

optimal value for Complexity Parameter (CP) is 

determined. This time-saver parameter prunes 

off the unimportant splits. In other words, any 

split which does not improve the fit by CP will 

be pruned off by cross-validation. 

4.2. Classification Accuracy Metrics 

In an attempt to recognize the best performance 

when comparing multiple classifiers, a 

confusion matrix is used. This multi-class 

confusion matrix identifies how many of the N-

predicted samples are correctly or incorrectly 

classified in each class [Tallón-Ballesteros and 

Riquelme, 2014], as shown in Table 3. 

The “Predicted” classifications section contains 

four subsections for each of the classes that 

want to be classified into and 

the “Actual” classifications section which has 

four subsections for each of the classes. In other 

words, every column of the confusion 

matrix represents the instances of that predicted 

class and each row of the confusion 

matrix represents the instances of the actual 

class. Moreover, the sum of actual and 

predicted instances for each class, namely 

and  
PredCi (i is the class identifier) has been 

calculated and specified in the table. Hence,

iiCM or the elements in the major diagonal (a, 

f, k, and p) are the elements correctly classified, 

while the elements out of this diagonal are 

misclassified. In a classification problem with 

more than two classes, the “one versus all” 

approach is used for calculating accuracy 

metrics [Rhys, 2020]. One class should be 

considered as the positive class and the other 

classes should be considered as the negative 

class. 

Table 3. An Example of a Confusion Matrix 

with Four Classes 

Predicted 

A
ct

u
a

l 

 
Level 

0 

Level 

1 

Level 

2 

Level 

3 
Total 

Level 

0 
a b c d 0ActC  

Level 

1 
e f g h 1ActC  

Level 

2 
i j k l 2ActC  

Level 

3 
m n o p 3ActC  

Total 
0PredC

 

1PredC

 

2PredC

 

3PredC

 
N  

Overall accuracy is the proportion of correctly 

classified samples among all N  predicted 

samples. It indicates the classifier quality to 

correctly identify samples, as shown in 

ActCi



Analyzing and Predicting Fatal Road Traffic Crash Severity Using Tree-Based Classification Algorithm 

International Journal of Transportation Engineering,  

Vol. 9/ No.3/ (35) Winter 2022 
643 

 

Equation (7) [Tallón-Ballesteros and Riquelme, 

2014]: 
a f k p

OA
N

  
  

(7)                

Kappa is an agreement measure between 

observed and predicted classes for cases in the 

test set, ranging from -1 to 1. It can be 

calculated from the following equation [Tallón-

Ballesteros and Riquelme, 2014]: 
4 4

1 1

4
2

1

ii Act Pred

i i

Act Pred

i

N CM Ci Ci

Kappa

N Ci Ci

 



 





 



 
(8)                

where iiCM are the major diagonal elements of 

the confusion matrix. False-positive (FP) 

representing the type I error for a particular 

class can be calculated by taking the sum of all 

the values in the column corresponding to that 

class except the value in the major diagonal 

[Diez, 2018] : 

Pri ed iiFP Ci CM                                (9) 

False-negative (FN) representing the type II 

error for a particular class can be calculated by 

taking the sum of all the values in the row 

corresponding to that class except the value in 

the major diagonal [Diez, 2018] : 

i Act iiFN Ci CM   (10) 

Given all the predicted labels for Class i , 

precision or positive predictive value of the 

class determines the number of correctly 

classified samples divided by the sum of the 

class predicted samples [Kumar and Toshniwal, 

2017]: 

ii
Ci

Pred

CM
Precision

Ci
  (11)                

Moreover, class recall, also called True Positive 

Rate (TPR) or sensitivity is the ratio of 

correctly classified samples divided by the 

number of samples in the actual class. The 

formula is given as follows [Kumar and 

Toshniwal, 2017]: 

ii
Ci

Act

CM
Recall

Ci
   (12) 

which can also be shown in percentage for each 

class, which can be called prediction 

percentage. 

Specificity or True Negative Rate for each 

class is calculated as the ratio of the true 

negatives of a specific class to the sum of 

its true negatives and false positives. Based on 

the confusion matrix introduced in Table 3, this 

measure can be calculated as [Janney et al., 

2020]: 

i Act
Ci

Act

N FP Ci
Specificity

N Ci

 



 (13) 

F-measure or F-score is the harmonic mean of 

precision and recall, ranging from 0 to the 

optimal value 1 [Hossin and Sulaiman, 2015]: 

2 Ci Ci
Ci

Ci Ci

Precision Recall
F score

Precision Recall


  


 (14) 

The receiver operating characteristic (ROC) 

curve graph is a technique for classifier 

visualization and organization based on their 

performance [Okasha & Abu-Saada, 2014]. 

The area under the ROC curve (AUC) is a 

widely used measure of the performance of 

supervised classification. The simple form is 

only applicable to the case of two classes. But 

here, the definition is extended to the case of 

four classes by averaging pairwise comparisons 

defined by [Hand & Till, 2001]. In this study, 

ROC curves and their corresponding AUCs are 

calculated for all possible combinations for 

pairs of classes. Then, the final ROC curve and 

AUC value for each method is calculated by 

averaging those pairwise combinations. The 

ROC plots show the sensitivity (or TPR) and 

specificity as the output threshold is moved 

over the range of all possible values [Robin et 

al., 2011]. The AUC provides a single measure 

of a classifier’s performance for evaluating 

which model is better on average. A random 

classifier has an AUC of 0.5, while a perfect 

classifier has 1. The AUC measure for each pair 

of classes is computed by obtaining the area of 

the graphic [López et al., 2013]: 
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2

Sensitivity Specificity
AUC


  (15) 

5. Experimental Results 

In this section, the decision tree algorithms 

were compared to each other in the prediction 

process. Classification evaluation metrics 

explained in section 4.2 were used for the 

comparisons. The computer specifications used 

in this study are Intel® Pentium® CPU B970 

@ 3.30 GHz with 8 GB RAM. The fatality 

severity of the crashes was predicted with four 

decision tree classification models. For better 

performance, all the variables were normalized. 

All of the models were trained by the 10-fold 

cross-validation method [Rhys, 2020]. Figure 

3(a) shows the result of the CHAID tree 

training process. According to the figure, the 

ideal values for alpha2 and alpha4 parameters 

are 0.05. The parameter alpha3 was determined 

to be -1, which is not shown in the figure. The 

package ‘CHAID’ was used to run the model in 

R. Training the C5.0 tree also showed that the 

model is superior with the tree structure and 20 

trials without winnowing, as shown in Figure 

3(b). The package ‘C5.0’ was used to run the 

model in R.  According to Figure 3(c), C=0.5 

and M=1 were determined as the best values for 

the parameters in order to reach the highest 

accuracy for the C4.5 tree. To fit the tree in R, 

the package ‘RWeka’ was used. According to 

Figure 3(d), a value of 0.26 was chosen for the 

complexity parameter in the CART training 

process. The package ‘rpart’ was used to run the 

model in R. Figure 4 shows the diagram of each 

decision tree resulted from the classification 

process. Table 4 and Table 5 represent the 

resulting confusion matrices and classification 

accuracy metrics for each model on the test set, 

respectively. 

 
(a) CHAID 

 
(b) C5.0 

 
(c) C4.5 

 
(d) CART 

Figure 3. Parameter Tuning of Classification Models 
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(a) CHAID 

 

(b) C5.0 

 

(c) C4.5  

(d) CART 

Figure 4. Diagrams of the Decision Tree Classification Models 

Table 4. Confusion Matrices of Classification Models on the Test Set 

Model Actual 
Predicted  

Level 0 Level 1 Level 2 Level 3 Total 

CHAID 

Level 0 111 13 6 15 145 

Level 1 37 114 15 30 196 

Level 2 15 42 130 23 210 

Level 3 9 9 8 130 156 

Total 172 178 159 198 707 

 

C5.0 

Level 0 127 9 3 3 142 

Level 1 8 167 8 1 184 

Level 2 1 4 208 3 216 

Level 3 1 2 0 162 165 

Total 137 182 219 169 707 

 

C4.5 

Level 0 123 14 3 2 142 

Level 1 18 154 12 0 184 

Level 2 1 4 210 1 216 

Level 3 3 1 1 160 165 

Total 135 173 226 163 707 

 

CART 

Level 0 81 39 30 4 154 

Level 1 24 81 18 6 129 

Level 2 31 54 147 34 266 

Level 3 6 10 21 121 158 

Total 142 184 216 165 707 
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Table 5. Accuracy Evaluation Metrics of Classification Models 

Model 

Fatality 

Severity 

Level 

FP FN 
Precision 

(%) 

Sensitivity/ 

Recall (%) 

Specificity 

(%) 

F-

measure 

(%) 

Overall 

Accuracy 

(%) 

Kappa 

(%) 

CHAID 

Level 0 61 34 77 65 94 69 

67 58 
Level 1 64 82 58 64 84 61 

Level 2 29 80 62 82 85 70 

Level 3 68 26 83 66 95 73 

C5.0 

Level 0 10 15 92 91 97 92 

94 92 
Level 1 15 17 89 93 97 91 

Level 2 11 8 96 94 98 95 

Level 3 7 3 98 97 99 97 

C4.5 

Level 0 22 19 87 85 97 86 

92 89 
Level 1 19 30 84 89 94 86 

Level 2 16 6 97 93 99 95 

Level 3 3 5 97 98 99 98 

CART 

Level 0 61 73 52 57 93 54 

60 47 
Level 1 103 48 62 44 85 51 

Level 2 69 119 55 68 78 60 

Level 3 44 37 76 73 87 74 

From the non-diagonal elements of the 

confusion matrices in Table 4 it can be seen that 

C5.0 had the least wrong predictions and 

according to Table 5, the tree obtained the best 

results in comparison with the other methods 

with an overall accuracy of 94% and a kappa of 

92%. Figure 5 indicates the ROC plots of the 

methods containing the curves and AUCs for 

the pairwise classes and their average 

representing each method. Figure 6 shows the 

risk maps of the classifiers produced by the 

whole dataset prediction, to inspect the fatality 

severity distribution throughout the study area.
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(a) CHAID 

 
(b) C5.0 

 
(c) C4.5  

(d) CART 
Figure 5. Multi-Class ROC Curves of Classification Models 

 

 
(a) CHAID 

 
(b) C5.0 

 
(c) C4.5 

 
(d) CART 

Figure 6. Risk Maps of Road Fatal Accidents along the Study Area by the Decision Tree Algorithms: 

(a) CHAID, (b) C5.0, (c) C4.5, and (d) CART 
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6. Discussion 

The study set out to train the classifiers with 

70% of the original dataset to make them 

optimal for the prediction process by parameter 

tuning, as expressed in Figure 3. After 

examining the models with the remaining 30% 

of the dataset as the test set, C5.0 gained an 

overall accuracy of 94% and kappa of 92%, 

which were the highest followed by 92% and 

89% respectively to C4.5 then by 67% and 58% 

respectively to the CHAID tree. Therefore, a 

slight distinction in the performance of C5.0 

and C4.5 trees was observed, since the former 

outperformed 2% and 3% in terms of overall 

accuracy, and 3% in terms of kappa, 

respectively. Also, it performed slightly better 

in other accuracy metrics, but some of the 

differences are almost insignificant. As 

mentioned in section 4.1.2, this can be due to 

the boosting technique applied to the C5.0 tree 

to improve its performance. CART’s worst 

performance stands out in Table 5 in 

comparison with the other three methods, as the 

tree provided the lowest values for all the 

accuracy evaluation metrics. A possible 

explanation for the CART’s weak performance 

in the classification process can be that the 

outcomes are restricted by the smaller size of 

the data. Therefore, this issue may raise the 

importance of a suitable dataset selection for 

prediction models. For more efficiency, the 

model can be trained with different methods. 

Specifically, the variables could be extended to 

more driver/time-related crash factors. High 

values for these two measures may be due to the 

appropriate proportion of instances in the data 

set. In general, these two metrics cannot be 

always reliable and the model performance 

should not be based on them. As a result, other 

metrics like precision, recall, specificity, and 

F1-measure should be taken into consideration. 

Accordingly, these four metrics were achieved 

on the test set, calculated via Table 4, and 

presented in Table 5. One can see that C5.0 

obtained superior values for these measures. To 

further compare these metrics for each class, 

the highest values for precision were observed 

in level 3 of the crashes in all the models.  

On the other hand, CHAID, C5.0, and C4.5 

gained the lowest precision on Level 1 of the 

crashes, while CART had the lowest precision 

in Level 0 of the crashes. Considering recall, 

the highest values in all the classifiers also 

belonged to Level 3 of the crashes, except the 

CHAID tree which had the highest recall in 

Level 2 of the crashes. This comparison 

conveys the notion that the models had superior 

predictions in these levels rather than the 

remaining two. This measure was also the 

lowest in Level 0 and Level 1 of the crashes. 

The highest and lowest values for the 

specificity in the CHAID, C5.0, and C4.5 

algorithms were observed in Level 3 and Level 

1 of the crashes, respectively; However, CART 

appeared differently, as it gained the highest 

and lowest specificity values in Level 0 and 

Level 2 of the crashes, respectively. The F-

measure values in Table 5 proved that the 

relatively balanced data highly affected the 

model overall accuracy in predicting class 

labels of the test set. The highest F-measure 

values were also observed in Level 3 of the 

crashes in each classifier, which is owing to the 

fact that the classifiers have better predicted this 

level.  

The ROC curves of the classification models 

with their AUC values are shown in Figure 5. 

The x-axis represents sensitivity or recall 

values, while the y-axis represents specificity 

values. The multi-class AUC was calculated 

based [Hand & Till, 2001] method. In this study 

as a classification problem with more than two 

classes, this multi-class AUC was obtained by 

averaging. The classes were paired and then the 

ROC of each pair of classes was plotted with 

separate colors and their AUCs were calculated 

and given, as shown in the figure. Based on this 

method, the average AUC for each model was 
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calculated from the AUC values of the pairwise 

classes, where the average ROC is shown as a 

black dashed line graph. The more inclined the 

curve is toward the upper left corner, the better 

is the classifier’s power to discriminate 

between the classes. As well as similarities 

found in the performance of C5.0 and C4.5 

trees as shown in Table 5, it was also visualized 

in the resulting ROC curves as represented in 

Figure 5. Where there can be difficulties 

encountered in the comparison of ROC curves, 

the AUC can sort models by their overall 

performance. As a result, the AUC is more a 

determining factor in the assessment of the 

models rather than ROC. Thus, it can be 

concluded that by comparing the mean AUC 

values achieved in the models, the C5.0 tree is 

considered as the best-performing classifier in 

this study with the highest AUC value of 

0.9631. Regarding the risk maps in Figure 6, 

red spots indicating Level 3 of the crashes were 

mainly observed in Tennessee, Kentucky, and 

West Virginia states. The risk maps resulted 

from C4.5 and C5.0 algorithms seem similar, 

however, the minor differences can be clearly 

seen in Tennessee, Virginia, and North 

Carolina states. It is apparent that C5.0 

classified Level 2 crashes more than the other 

methods. Moreover, the fatality severity 

dispersion is most diverse in CART risk map.  

7. Conclusion 

Analysis of road fatal accidents is of great 

significance; because the irrecoverable costs of 

these accidents have a profound impact on 

society. Given the rising fatality rate worldwide 

and causing life and property damages, the 

occurrence prediction of these accidents, and 

identifying the high-risk areas should be highly 

emphasized. Therefore, we can prevent these 

accidents as much as possible by taking these 

measures, educating the public, enacting 

effective management laws and policies, and 

more oversight to deal with the accident factors 

increasing fatality rate. In this paper, a 

comparative study was conducted with the 

purpose of investigating the prediction power 

of tree-based algorithms for fatal crashes. The 

study used 2355 fatal crash records that 

occurred on the roadways of the US National 

Highway System from 2007 to 2009. In order 

to achieve the objectives of this study, four 

decision tree classification methods such as 

CHAID, C4.5, C5.0, and CART were proposed. 

The hyper parameters of the models were 

optimally tuned by training the models through 

70% of the whole data as the training set to 

achieve their best performance. Through 

validation with the remaining 30% of the data 

as the test set and the metrics discussed in 

section 4.2, the C5.0 tree proved to be an 

outperforming model in the study that can be 

applied to make effective predictions with 

multiple factors associated with these fatal 

crashes. This task is an application of data 

mining, which has proven to be reliable and 

yield productive results. The proposed 

methodology is suitable for discovering 

meaningful information. However, the results 

are quite general as the data lacks a wide variety 

of variables, such as various driver-related 

factors. More information can be revealed by 

having more complementary variables in 

accidents such as age, gender, type of license, 

and driver education level. The methodology of 

this paper can be a field for extensive 

experiments and improvements. In further 

analyses, a cost-based crash approach can be 

applied to use overall crash costs in order to 

train the models. 
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