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Abstract 
According to previous studies, 60% to 70% of the total rural road accidents would occur at the city entrance zones 

in Iran. Therefore, the characteristics of these zones could be considered as effective parameters in rural road 

accidents. In all prior studies, a 30-km buffer of the cities' entrances has been assumed as the border of the entrance 

zone. The 30-km buffer could not be considered as the boundary of the influenced area (BIA) of the cites´ entrance 

for all types of the roads and cities, merely based on aggregate rural road accidents´ data and a traditional definition 

of the city entrance zone. Determining the BIA for various rural roads with different characteristics using the 

modelling approach is the innovative aspect of this research. Furthermore, according to their specifications, 

implementing safety improvements in these areas, not only reduce the number of rural road accidents and 

fatalities, but also prevent the loss of road safety costs due to the economic problems of Iran. Thus, this study 

aimed to develop linear and logistic regression models to predict the BIA of rural roads in Iran. The results of this 

study indicated a fit index value of 0.737 for the linear regression model, and 0.379 and 0.346 for the ordered 

probit (OP) and multinomial logit (ML) models, respectively. The analysis of significant variables at 95% 

confidence level, revealed that the access points' density, and the length of adjacent land uses are the most 

significant variables affecting the BIA. 
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1. Introduction 

According to the latest statistics, Iran has the 

population of approximately 80 million, and the 

death rate caused by traffic accidents in this 

developing country is 20.5 deaths per 100,000 

of individuals [WHO, 2018]. The result of 

economic studies showed that the direct and 

indirect costs of accidents and their consequent 

injuries and fatalities are about $3.6 billion 

annually (calculated based on 2007 prices). 

This is equivalent to 6.23% of Iranian gross 

national product (GDP) in the year 2007 

[Ehsani-Sohi, Dashtestaninejad, and Khademi, 

2019; Elyasi et al., 2017]. 

On the other hand, according to statistics 

published by the road maintenance and 

transportation organization of Iran [RMTO, 

2020], the total number of deaths caused by 

traffic accidents from March 2019 to March 

2020 (based on Iranian official calendar) was 

16,947. From this amount, around 66% (equal 

with 11,186) have died in rural road accidents. 

Figure 1 shows the trend of changes in rural 

road accidents and fatalities in Iran during the 

recent years [RMTO, 2020]. 

 
Figure 1. Changes' tendency in rural road 

accidents and fatalities in Iran during the recent 

years (RMTO, 2020) 

A review of previous studies focused on spatial 

analysis of rural road accidents in Iran, shows 

that a significant proportion of accidents have 

been occurred in the marginal areas around the 

cities [Sajed, Shafabakhsh, and Bagheri, 2019; 

Elyasi, Saffarzadeh, and Boroujerdian, 2018; 

Shafabakhsh, Famili, and Akbari, 2016; Effati, 

Rajabi, and Samadzadegan, 2014; 

Mohaymany, Shahri, and Mirbagheri, 2013]. In 

addition, in several road safety studies, it has 

been mentioned that 60% to 70% of the rural 

road accidents in Iran have occurred in the 

cities' surrounding areas, called as the city 

entrance zone [Ehsani-Sohi, Dashtestaninejad, 

and Khademi, 2019; Dashtestaninejad, Amiri, 

and Ehsani-Sohi, 2018; Davoodi and Ahmadi, 

2015; Afandizadeh and Golshan-Khavas, 2006; 

Shafabakhsh and Mousavi, 2006; RMTO, 

1999]. In previous studies of the city entrances' 

safety in Iran, a traditional definition has been 

used to determine the boundary of the city 

entrances. Accordingly, the city entrance is the 

initial 30 km of the rural roads (from the origin 

city) and the 30 km of the end of the rural roads 

(from the destination city) [Ahmadi, 2014; 

Akbarpour, 2013; Afandizadeh and Golshan-

Khavas, 2006; Khabiri and Ahmadinejad, 

2003]. Therefore, this definition emphasizes a 

30-km buffer of the cities´ entrance [Ehsani-

Sohi, Dashtestaninejad, and Khademi, 2019]. 

In all previous studies, a distance of 30 km from 

the origin or destination city has been 

considered as the boundary of the cities' 

entrance area.  

To better clarify this issue, the accidents´ 

cumulative frequency diagram (ACFD) of the 

Qom-Tehran freeway from March 2017 to 

March 2018 is shown in Figure 2. The accident 

data set, which was used for this chart was 

obtained from the rural traffic police of Iran. 

Qom-Tehran freeway is a three-lane road 

placed at each direction with a length of 115 

km.  Figure 2 demonstrates that 33% of the 

accidents of this highway have been happened 

in the first 30 km of the road. Similarly, 35% of 

these accidents have been occurred in the last 

30 km.  Consequently, it could be interpreted 

that 68% of the total accidents of the Qom-

Tehran freeway have been occurred within a 
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distance of 30 km from the origin and the 

destination cities; while, these segments 

account for 52% of the highway length. 

 
Figure 2. ACFD of Qom-Tehran freeway for a 

period of one-year 

In this study, the term ‘marginal area of the city’ 

has been used instead of the ‘city entrance 

zone’. According to the preliminary 

observations, marginal areas around the cities 

account for a high share of the rural road 

accidents in Iran; so, they could be regarded as 

the areas affecting the rural road accidents. To 

implement the efficient safety improvements in 

marginal areas and to reduce the accidents and 

fatalities in surrounding roads, accurate 

determination of influencing areas on rural road 

accidents is required.  

The definition given in previous studies for the 

city entrance zone (30-km buffer) is solely 

based on a preliminary analysis of aggregate 

rural road accident data. The 30-km boundary 

could not be considered as BIA for all types of 

roads and cities. Instead, it could be only 

measured based on the accident statistics and a 

traditional definition of the city entrance zone. 

It can be also investigated in the ACFD of the 

Qom-Tehran freeway (Figure 2) in which the 

accident curve is divided into three parts. The 

first part is the 20-km segment at the beginning 

of the highway, where 30% of the accidents 

have occurred. The second part, which includes 

the distance between 20 and 85 km, is where 

35% of the total accidents are occurred. The 

other 35% of accidents are happened in the 

third part, which is the last 30 km of this 

highway.  

The slope changing of the curve in the second 

section compared to the first section, indicates 

a significant reduction in the accident rate. In 

the same way, a change in the curve slope is 

observed in the third section compared to the 

second section, which indicates another 

significant increase in the last division. As 

mentioned above, the BIA is located at the first 

segment of the road in a distance of 20 km from 

the Qom city, and the 30-km boundary could 

not be considered as the BIA for this road's 

segment.  

Other examples of the ACFD rural roads have 

presented in Figure 3. These diagrams would 

underline the difference between BIA concept 

and traditional definition of 30-km kilometers 

buffer.

 
Figure 3. Examples of ACFD rural roads for a period of one-year

On the other hand, some variables such as type 

and density of the adjacent land use, the density 

of access points and their average distances, 

road traffic volume, and topography of the 
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region seem to be effective on BIA. Therefore, 

lack of the accuracy improvement of BIA 

determination for a variety of roads with 

different characteristics, and using a constant 

value for all conditions, could be identified as a 

gap in previous studies. 

Determining the BIA for various rural roads 

with different characteristics using the 

modeling approach, which is the innovative 

part of this research, and implementing safety 

improvements in these areas based on their 

specifications, not only reduce the number of 

rural road accidents and fatalities, but also 

prevent the loss of road safety costs due the 

economic problems in Iran. Hence, 

accentuating the literature gap and considering 

the importance of BIA scrutiny and its effect on 

efficiency increase of the road safety 

improvements in Iran, the main purpose of this 

study is to provide appropriate models to 

determine BIA. 
2. Literature Review 

The safety analysis of the city suburbs and 

residential areas in previous studies can be 

categorized into two sections. The first part 

consists of the studies related to safety of the 

city entrance zones. Their main objectives are 

investigating the factors affecting rural road 

accidents at the cities' entrances. The second 

part includes the studies conducted to identify 

accident-prone points in the rural roads, in 

which their results are used to examine the 

distribution of accident-prone points in the 

cities' marginal areas.  

Khabiri and Ahmadinejad [Khabiri and 

Ahmadinejad, 2003] in their research 

determined some factors such as: illegal 

constructions, various land-use types around 

the roads, the existence of several access points 

to the road, lack of complete separation of 

urban and rural road traffic, different vehicle 

speeds, and pedestrian traffic, as the reasons of 

accidents' high rate within 30 km of the city 

entrances. Shafabakhsh and Mousavi 

[Shafabakhsh and Mousavi, 2006] considered 

different traffic flows with different 

destinations as one of the focal explanations for 

the high rate of accidents at the city entrances. 

In another study, Akbarpour [Akbarpour, 2013] 

analyzed the factors affecting occurrence of the 

rural road accidents at the cities' entrance in 

Khuzestan province of Iran by examining the 

data of Ahwaz-Andimeshk road accidents over 

three years. It was found that nearly 57% of the 

accidents on this highway have been occurred 

at the entrance of Ahwaz and Andimeshk (30 

km buffer from the entrance of each city). 

According to this study, some of the reasons of 

high accident rate at the entrance zones of these 

cities, are developing industrial centers on both 

sides of the roads, high access rates to 

agricultural farms and residential areas, non-

standard intersections, lack of signs and safety 

equipment, and inadequate asphalt pavement. 

In another study carried out by Akbarpour, 

Amini, and Najafi-Alamdarlou [Akbarpour, 

Amini, and Najafi-Alamdarlou, 2021], some of 

these parameters were mentioned as effective 

factors in rural road accidents' occurrence at the 

cities' entrance as well. Some of the city 

entrances safety' studies have focused on 

modeling the number and severity of the 

accidents in these areas. Afandizadeh and 

Golshan-Khavas [Afandizadeh and Golshan-

Khavas, 2006] have developed the city 

entrances' safety model using the data of the 

rural road accidents and regression methods. 

Based on the results of their study, the 

exponential function has the best fit with the 

data of physical and demographic 

characteristics and the accidents occurred 

within 30 km of the cities. In more detail, the 

highway width, vehicle traffic volume, number 

of access points to the main route, city 

population, road slope, and road length are 

introduced as the independent variables in this 

model. In a study conducted by 
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Dashtestaninejad, Amiri, and Ehsani-Sohi 

[Dashtestaninejad, Amiri, and Ehsani-Sohi, 

2018], discrete choice models were used to 

predict the accidents' severity at the city 

entrances. They detected variables such as age 

and education, traffic volume, number of speed 

violations, collision type, and the number of 

heavy vehicles involved in the accident as 

affecting parameters on the severity of 

accidents within 30 km of the city entrance. 

Ehsani-Sohei, Dashtestaninejad, and Khademi 

[Ehsani-Sohei, Dashtestaninejad, and 

Khademi, 2019] used negative binomial and 

Poisson regression models to predict the 

number of accidents at the entrance zone of 

Tehran (the capital of Iran). A comparison of 

modeling results in that study showed higher 

efficiency of negative binomial model 

compared to Poisson regression model. 

Significant variables in the model were 

Average Daily Volume (ADT), the proportion 

of heavy vehicles, daily average number of 

speed violations, and the density of access 

points along the highway. 

The purpose of the second section of the 

research is to identify the accident-prone points 

in rural roads, in which their findings could be 

used to explore the distribution of black spots 

in the marginal areas around the cities. 

Hosseinlou and Sohrabi [Hosseinlou and 

Sohrabi, 2009] used the adaptive fuzzy-neural 

inference system (ANFIS) to identify the 

accident-prone points of the rural roads. Based 

on the outcomes of their study, one of the 

variables used in the proposed model (to 

determine accident-prone points in rural roads) 

is a variable that explains the effect of 

residential areas on accidents. In another 

inquiry, Mohaymany, Shahri, and Mirbagheri 

[Mohaymany, Shahri, and Mirbagheri, 2013] 

used Network Kernel Density Estimation 

(NKDE) to determine the accident-prone points 

of the Arak-Khomein road in Iran. According 

to them, 10 km area around the city of Arak and 

15 km area around the city of Khomein have a 

higher risk of accidents compared to other 

segments of the road. Effati, Rajabi, and 

Samadzadegan [Effati, Rajabi, and 

Samadzadegan, 2014] used a fuzzy-neural 

approach to generate an identification model 

for high-risk areas in rural roads. To achieve 

this end, the data of Kouhin-Lowshan road 

were used, which is a two-lane road with a 

length of 62 km. According to that study, one 

of the effective variables in determining high-

risk areas in rural roads is the distance from the 

cities and high- populated centers. Considering 

the modeling results, one of the five most 

dangerous areas is located 4 km away from 

Kouhin city. Also, the parts located within ten 

km of Kouhin city and six km of Lowshan city 

are classified into dangerous group segments. 

These results indicate a high risk of accidents in 

marginal area of the cities and suburbs. 

Shafabakhsh, Famili, and Akbari 

[Shafabakhsh, Famili, and Akbari, 2016] used 

Kernel Density Estimation (KDE) and Nearest 

Neighbor Distance Analysis (NNDA) for 

spatial analysis of Semnan-Garmsar road 

accidents in Semnan province (Iran). The 

results of that study showed that in terms of the 

number of accidents, the most dangerous 

segment of the  road is located within 30 km of 

Garmsar city; while, in terms of the severity of 

accidents and fatalities, the most dangerous 

segment is placed within 10 km around 

Semnan. Generally, 10 km areas around both 

Semnan and Garmsar cities are considered as 

high-risk segments of the Semnan-Garmsar 

road. Significant share of the rural road 

accidents in the margins of origin and 

destination cities has also been verified in other 

studies conducted by Sajed, Shafabakhsh, and 

Bagheri [Sajed, Shafabakhsh, and Bagheri, 

2019], Elyasi, Saffarzadeh, and Boroujerdian 

[Elyasi, Saffarzadeh, and Boroujerdian, 2016], 

Effati, Rajabi, and Samadzadegan [Effati, 

Rajabi, and Samadzadegan, 2012], and 
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Boroujerdian, Saffarzadeh, and 

Abolhasannejad [Boroujerdian, Saffarzadeh, 

and Abolhasannejad, 2010]. 

3. Methodology 

In this study, the linear and logistic regression 

models were used to develop the BIA 

determination model. This section provides 

explanations of the conducted models and their 

applications in solving the problem. In addition, 

the process of models' validation is explained. 

3.1. Linear Regression Model  

The linear regression model is used to 

determine the BIA. The linear regression refers 

to the model, which relates to a dependent 

variable and one or more independent 

explanatory variables. The output of the linear 

regression model has a continuous value. 

General form of a linear regression model with 

k independent variables (x1, x2, ..., xk) and a 

dependent variable (y) is assumed as Equation 

1: 

(1) 
y = β0 + β1X1 + β2X2 +⋯

+ βkXk + ε 

Where, β0 to βk are the regression coefficients, 

and ε is the error term of the model, which 

reflects the influence of some effective factors 

on dependent variable that is not considered in 

the model. To estimate the regression 

coefficients, the least squares' method is 

utilized. 

Usually, the statistical significance of each 

variable in the linear regression model is 

assessed by the t-test; while, the whole model is 

evaluated by using F-test. The coefficient of 

determination (R2) is also applied to determine 

the model's goodness of fit. 

3.2. Logistic Regression Model 

The logistic regression model is considered as 

a classification algorithm that is used to find the 

relationship between observed variables and a 

set of discrete classes. In contrast to the linear 

regression model, which has a continuous 

dependent variable, the logistic regression 

utilizes the logistic sigmoid function to 

calculate the discrete classes' probability of 

dependent variable.  

Regarding the nature of logistic regression 

models, these models are appropriate to 

determine BIA. In this case, instead of 

considering the BIA as a continuous value, the 

probability of being within a certain range (first 

or last segment of the highway) is examined. To 

determine the BIA for the first segment of a 

rural road connecting the city A to city B, the 

initial 40 km segment of the road is divided into 

eight segments with the length of 5 km.  The 

first category from 0 to 5 km, the second 

category from 5 to 10 km, and this procedure 

continues to the eighth category from 35 to 40 

km. Therefore, the model output determines 

which segment is more probable to be 

considered as the BIA location. For example, if 

the BIA is more likely to be within a 10 to 15 

km segment (third category), the boundary of 

the influence area around the city A for the 

intended highway, will be 15 km. Similarly, the 

BIA can also be specified for the end of the 

road. 

Multinomial logistic regression (MLR), which 

generalizes logistic regression to multiclass 

problems, is a semi-parametric classification 

statistic. MLR uses a set of independent 

variables of any type (e.g., binary, ordinal, 

continuous) to predict various outcomes' 

probabilities of a categorically distributed 

dependent variable. It utilizes the log odds' ratio 

and an iterative maximum likelihood method to 

develop the final model and to predict the group 

membership. It is based on some assumptions, 

including (1) independent variable with a single 

value for each case; (2) relatively low 

collinearity; and (3) the independence of 

irrelevant alternatives (IIA). IIA defines the 

odds of preferring one category to another, 

without considering the presence of other 

irrelevant alternatives. 
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Equation 2 represents the tendency of 

observation i towards the category k in the 

Multinomial Logit (ML) model, as follows: 

(2) Tki = αk + βkXki + εki 

In which, αk is a constant parameter for the 

category k of dependent variable, βk shows a 

vector of parameters for the category k of 

dependent variable, Xki represents a vector of 

explanatory variables affecting dependent 

variable for observation i at the category k, εki 

denotes a random error term with a Gumbel 

distribution; i = 1,…, n where n is the total 

number of observations used in the model. 

Equation 3 calculates the probability of each 

category. Assume Pi(k) is the probability of 

observation i in the category k, such that: 

(3) Pi(k) =
exp(αk + βkXki)

∑ exp(αk + βkXki)∀k
 

The ordered discrete choice models (i.e., the 

ordered probit/logit models: OP/OL), which 

ignores the IIA assumptions, have been used to 

analyze the multinomial variables with an 

ordered nature [Pai and Saleh, 2008]. 

The Op/OL models consider a latent variable z, 

as demonstrated in Equation 4 to determine the 

outcome, as the following: 

(4) z = βX + ε 

Where, X is the vector of explanatory variables 

for each observation, β is the vector of 

coefficients, and ε is a random error term with 

a Gumbel distribution. Then, the dependent 

variable y is estimated by Equation 5: 

(5) y = {

1, if z ≤ γ1
k, if γk−1 < z ≤ γk
K, if z > γK−1

 

Where, γ = {γ1 …, γk ..., γK-1} are the threshold 

values of all dependent variable categories; k = 

1 …, K; and K is the highest category. 

Given the value of X, the probability of 

dependent variable being in each category 

could be determined as Equation 6: 

(6) 

{
 

 
p(y = 1) = Φ(−βX)

p(y = k) = Φ(γk−1 − βX)

           −Φ(γk−2 − βX)

p(y = K) = 1 − Φ(γK−1 − βX)

 

Where, Φ(u) denotes the cumulative density 

function of the random error term ε evaluated at 

u. To evaluate the parameters of the OP/OL 

models, the maximum likelihood method is 

utilized. As OP and OL models produce 

remarkably similar results [O’Donnell and 

Corner, 1996; Pai and Saleh, 2008], only the 

estimation results of the OP model have been 

reported in this study. 

It is a key assumption in ordered models that 

the effects of any explanatory variable on 

different thresholds are consistent or 

proportional; hence, this is usually termed as 

the assumption of proportional odds (APO). 

Based on this assumption, the explanatory 

variables have the same effect on the odds 

without considering the threshold [Asare and 

Mensah, 2020; Sasidharan and Menéndez, 

2014; Wang and Abdel-Aty, 2008]. 

3.3. Models' Validation 

After the modeling process, the models are 

validated using the validation dedicated data. 

As other studies have also focused on modeling 

[Saheli and Effati, 2021; Sheikholeslami 

Bondarabadi, and Asadamraji, 2020], the 

validation process is performed using 20% of 

the   observations that are not used for the 

development of models. The mean absolute 

deviation (MAD) and root mean square error 

(RMSE) were then computed to validate the 

models' development using validation dataset. 

They are represented through the following 

equations: 
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(7) 

MAD = 

1

n
∑|ypredicted − yobserved|

n

t=1

 

(8) 

RMSE =

√
1

n
∑ (ypredicted − yobserved)

2n
t=1  

Where, ypredicted and yobserved are the predicted 

and observed value of BIA, respectively, and n 

is the number of observations in the validation 

process. 

4. Database Analysis 

To develop BIA determination models for the 

rural roads, the data obtained from 26 roads in 

Iran have been used. Among them, seven roads 

are freeways, nine are expressways, and the 

other ten roads are two-lanes. The freeways and 

expressways have two directions; thus, totally 

32 freeway and expressway roads were studied 

in this research.  

Also, there are two cities at both ends of each 

road that their marginal areas' impact on the 

road has been investigated. As a result, there are 

totally 64 observations for the freeways and 

expressways in this study. Furthermore, there 

are altogether 20 observations for two-lane 

roads; since, there is only one route between the 

origin and destination cities. Accordingly, a 

total number of 84 observations were 

considered. While determining the case study, 

the diversity and extent of the characteristics of 

the roads and cities at both ends of each road, 

were taken into account.  

The data gathered for selected highways 

included the following issues: the accident data 

of each road (data for a period of one year from 

March 2017 up to March 2018), information 

about the cities at both ends of each road, type 

of road, topographic information, traffic 

volume, speed limit, number of lanes, number 

of access points, average access distance, 

conditions of adjacent land-uses, separated 

information of each existing land-use, and 

geometric characteristics of the highway. Apart 

from the accident data obtained from the rural 

traffic police, other required information was 

received from the Ministry of Roads and Urban 

Development as well as the Road Maintenance 

and Transportation Organization of Iran. 

The purpose of developing BIA models is to 

determine the length of the beginning or ending 

segment of the road; where, the accident rate is 

significantly different from the middle 

segment. To define the value of dependent 

variable for each observation, an ACFD was 

plotted for each route. Traffic accident data 

were used to plot these curves, as shown in 

Figure 2. ACFD presents the proportion of 

different road segments in the total number of 

occurred accidents over one year. Therefore, 

the BIA was specified for the beginning and the 

end of the route by this curve and through 

identifying the break-points of the slope. To 

determine the exact break-points, each route 

was divided into two km segments, and the 

number of each segment's accidents was 

identified. Then, the difference between the 

number of accidents in each segment and its 

upstream segment was calculated and divided 

by the total number of these road accidents, so 

that the changing rate in the number of 

accidents was distinguished for different 

segments of the highway. This index identifies 

major changes in the accident rate along the 

route. Finally, it is possible to identify the 

segment located at the city margin, which has 

the greatest change in accident rates. The 

purpose of examining the crash rate changes in 

the marginal area is to detect the BIA at the 

beginning and end of intended route. The BIA 

is determined by its distance from the beginning 

or end of the road in kilometer. The 

methodology of BIA determination is 

characterized using the following equations: 
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(9) Sn =
An
Ln

 

(10) ∆Sn = Sn − Sn−1 

(11) 

for m = 1 to N  

if (∆Sm = max
n=1 to N

(∆Sn))  

then m = BIA 

Where, An is the number of accidents in 

segment n, Ln is the length of segment n, N is 

the total number of segments, and m is the 

segment in which the BIA is placed. 

Notably, the BIA value will only be greater than 

zero if the ACFD slope in the city margin is 

greater than the middle segment. Otherwise, the 

BIA value is considered to be zero. Likewise, if 

there is no change in the slope of the middle 

section in comparison with the initial or final 

sections, the BIA value would be still zero. 

A descriptive analysis of the main continuous 

and discrete variables of the modeling database 

is presented in Table 1 and Table 2, 

respectively. For some of the variables 

introduced in Table 1, such as the number of 

access points and the length of adjacent land-

uses to the road, a fixed value was not provided 

for the entire route. To determine the value of 

these variables, the road segment located at the 

marginal area of the city was divided into equal 

parts, and the value of the variable was 

determined for each part, separately. Therefore, 

considering the maximum length of a city 

margin equal to 40 km and dividing the initial 

and final parts of the studied route into five km 

segments, for each observation, the amount of 

mentioned variables were separately 

determined for the segments one to eight. The 

nearest five km segment to the origin or 

destination city is always considered as the first 

segment, and the farthest segment from the city 

is considered as the eighth segment. It should 

be noted that for this group of variables, the 

minimum and maximum values mentioned in 

Table 1 correspond to the first segment. The 

value of these variables is also measured 

cumulatively. For example, in addition to 

measuring the number of road access points in 

each five km segment, the number of road 

access points at the distances of 5 to 40 km 

around the city is also specified. 

Another variable attributed to some of the road 

features, such as the number of access points 

and the length of land-uses is defined as the 

breakpoint of the cumulative diagram (BCD). 

As was explained for determining the value of 

the dependent variable for each observation, a 

cumulative curve was plotted for each feature. 

These curves illustrate changes in the number 

of access points and the length of adjacent land-

uses in different parts of the road. To determine 

the break-point of these curves, the same 

method described for the accident curve was 

used, and the position of the break-point was 

identified according to its distance from the 

beginning or the end of the road in kilometers.

Table 1. Descriptive analysis of continuous variables of the modeling database 

Variable Description Mean Min. Max. St.d 

BIA BIA for each observation (in km) 6.655 0 30 7.895 

P the population of origin or destination city (thousands) 588 1 8694 1372 

A the area of origin or destination city (km2) 49 0.3 645.0 102 

S speed limit of the road (km/h) 109 90 120 11 

L number of lanes in one direction 2 1 4 1 

V average traffic volume in one lane (veh/hr/lane) 212 31 785 139 

NAP (in segment #) number of access points in the 5-km segment 4 0 9 3 

NAP-BCD 
break-point of access points cumulative frequency diagram (in 

km) 
9.9 0 28 6.8 
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Variable Description Mean Min. Max. St.d 

DAP (In segment #) 
the average distance between access points in the 5-km segment 

(m) 
2002 140 5000 1738 

LALU (in segment #)  length of roads' adjacent land use in the 5-km segment (km) 2.2 0.0 5.0 2.2 

LALU- BCD  break-point of cumulative land use' length diagram (in km) 9.4 0.0 38.0 9.7 

LALU-R (in segment #) 
length of roads' adjacent residential land use in the 5-km 

segment (km) 
0.5 0.0 4.9 0.9 

LALU-I (in segment #) 
length of roads' adjacent industrial land use in the 5-km segment 

(km) 
0.4 0.0 2.5 0.6 

LALU-A (in segment #) 
length of roads' adjacent agricultural land use in the 5-km 

segment (km) 
1.1 0.0 5.0 1.9 

LALU-C (in segment #) 
length of roads' adjacent commercial land use in the 5-km 

segment (km) 
0.2 0.0 3.0 0.5 

LHC (in segment #) length of Horizontal curves in the 5-km segment v 0.5 0.0 4.5 1.1 

Table 2. Descriptive analysis of discrete variables of the modeling database 

Variable Description Frequency Percent (%) 

 FI freeway indicator 
freeway = 1 28 33 

otherwise = 0 56 67 

EI expressway indicator 
expressway = 1 36 43 

otherwise = 0 48 57 

 TI two-lane indicator 
two-lane = 1 20 24 

otherwise = 0 64 76 

LTI level terrain indicator 
level terrain = 1  71 84 

otherwise = 0 13 16 

RTI rolling terrain indicator 
rolling terrain = 1 9 11 

otherwise = 0 75 89 

 MTI 
mountain terrain 

indicator 

mountain terrain = 1 4 5 

otherwise = 0 80 95 

5. Results 

5.1. Linear Regression Model 

Concerning the correlations' analysis results 

based on the Pearson coefficient and the 

Spearman coefficient, there is strong positive 

correlation between BIA and some independent 

variables such as the city population (P), city 

area (A), average traffic volume (V), the break-

point of access points cumulative frequency 

diagram (NAP-BCD), and the break-point of 

cumulative land use' length diagram (LALU-

BCD). However, some of these independent 

variables had a high correlation degree with 

each other. For example, the correlation 

coefficient between the city population and city 

area was significant. Using all variables 

introduced in Table 1, analyzing the correlation 

between the variables, and considering other 

model evaluation parameters, the best linear 

regression model was obtained for estimating 

BIA. The best linear regression model is 

presented in Table 3. 
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Table 3. The best calibrated linear regression model 

Variable Coefficient St.d t-ratio p-value 

V (veh/hr/lane) 0.008 0.003 2.408 0.018 

NAP-BCD (km) 0.405 0.067 6.019 0.000 

LALU- BCD (km) 0.545 0.048 11.445 0.000 

Constant -4.194 0.991 -4.231 0.000 

BIA =  −4.194 + (0.008 ×  V) + (0.405 × NAP − BCD) + (0.545 × LALU −  BCD) 

The model provides the goodness of fit 

(Adjusted R2) at 0.737. Based on the results of 

the significance analysis, all independent 

variables of the model were significant at 95% 

confidence level (t ratio at 95% confidence 

level was 1.96). The result of the F test (78.486) 

also confirmed the model. The observation-

estimation diagram for the linear regression 

model is presented in Figure 4. This graph was 

provided based on the values of the studied 

roads' model and its comparison with real 

observations. It should be underlined that in this 

diagram each point can represent one or more 

specific observations. 

 

 
Figure 4. The observation-estimation diagram 

for the linear regression model 

5.2.  OP Model 

To develop logistic regression models, the 

marginal areas of the origin and destination 

cities for each route were divided into eight 5-

kilometer segments. The output of the model 

revealed the segment where the BIA is more 

likely to be. Due to the ordered nature of the 

alternatives (0 to 5 km, 5 to 10 km ..., and 35 to 

40 km), the ordered models were more 

compatible with this case study than other types 

of logistic regression models. Because of the 

approximate similarity of the OL and OP 

results, only the results of the OP model were 

presented. 

For the ordered model estimation, all the 

variables provided in Table 1 were initially 

included in the model. Similar to other studies 

performed on logistic regression modeling 

[Ghasedi, Sarfjoo, and Bargegol, 2021], the 

backward approach was used for the process in 

the way that only those, which were significant 

at the level of 0.95 were included in the model. 

Accordingly, the best OP model was obtained 

as shown in Table 4. In this model, the type of 

independent variables is continuous. The signs 

and values of the estimated coefficients of the 

variables from all models were acceptable. The 

model fit index value (Adjusted ρ2) was equal 

to 0.379. The observation-estimation diagram 

for the OP model is presented in Figure 5. It 

should be mentioned that in this diagram, each 

point could represent one or more specific 

observations. 
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Table 4. The best-calibrated OP model 

Variable Coefficient St.d t-ratio p-value 

NAP-BCD (km) 0.136 0.026 5.231 0.000 

LALU- BCD (km) 0.142 0.020 7.117 0.000 

Threshold Parameters 

γ1 2.532 0.393 6.443 0.000 

γ2 3.392 0.450 7.538 0.000 

γ3 4.672 0.605 7.722 0.000 

γ4 5.909 0.743 7.953 0.000 

γ5 6.752 0.827 8.164 0.000 

γ6 6.931 0.847 8.183 0.000 

γ7 7.195 0.882 8.158 0.000 

-2 Log-likelihood at zero = 240.363 

-2 Log-likelihood at convergence = 148.484 

Adjusted ρ2 = 0.379 

z = (0.136 × NAP − BCD) + (0.142 × LALU − BCD) 

y =

{
 
 
 

 
 
 
1, if z ≤ 2.532
2, if 2.532 < z ≤ 3.392
3, if 3.392 < z ≤ 4.672
4, if 4.672 < z ≤ 5.909
5, if 5.909 < z ≤ 6.752
6, if 6.752 < z ≤ 6.931
7, if 6.931 < z ≤ 7.195
8, if z > 7.195

 

 
Figure 5. The observation-estimation diagram 

for OP model 

As mentioned above, APO assumes that the 

explanatory variables have the same effect on 

the odds regardless of the threshold in ordered 

models. It is necessary to evaluate this 

assumption in order to apply the OP model 

properly. Accordingly, the results showed that 

APO is not held in this dataset; hence, the 

assumption was rejected. However, APO is 

frequently rejected particularly when there is a 

continuous explanatory variable in the model 

[Allison, 1999]. 

5.3. ML Model 

Due to the APO violation in the OP model, the 

ML method was used to develop the logistic 

regression model. According to Table 5, after 

analyzing the significance of the variables at 

95% confidence level and considering not 

correlated independent variables as well as 

other evaluation criteria of the logistic 

regression models, the best ML model was 

obtained The type of independent variables of 

this model was defined as binary variables. For 

the eight-level outcome, category eight (35-40) 

was used as the baseline. Concerning the nature 

of the problem in this study, the coefficients of 

explanatory variables in the utility functions 

were set to be equal. In each category, the 

explanatory variable's value in the utility 

function was different from other categories; 

therefore, the coefficients were equal. 
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Table 5. The best-calibrated ML model 

Variable 
Category 1 

(0-5) 

Category 2 

(5-10) 

Category 3 

(10-15) 

Category 4 

(15-20) 

Category 5 

(20-25) 

Category 6 

(25-30) 

Category 7 

(30-35) 

Constant 
30.446 

(0.044)a 

28.882 

(0.023) 

28.976 

(0.032) 

28.372 

(0.019) 

28.934 

(0.027) 

27.773 

(0.008) 

27.988 

(0.011) 

NAP-BCD b 
2.396 

(6.053) 

2.396 

(6.053) 

2.396 

(6.053) 

2.396 

(6.053) 

2.396 

(6.053) 

2.396 

(6.053) 

2.396 

(6.053) 

LALU- BCD c 
2.340 

(6.468) 

2.340 

(6.468) 

2.340 

(6.468) 

2.340 

(6.468) 

2.340 

(6.468) 

2.340 

(6.468) 

2.340 

(6.468) 

-2 Log-likelihood at zero = 119.894 

-2 Log-likelihood at convergence = 77.203 

Adjusted ρ2 = 0.346 

Tk =

{
 
 
 

 
 
 
30.446 + (2.396 × NAP − BCD ) + (2.340 × LALU − BCD), for k = 1
28.882 + (2.396 × NAP − BCD) + (2.340 × LALU − BCD), for k = 2
28.976 + (2.396 × NAP − BCD) + (2.340 × LALU − BCD), for k = 3
28.372 + (2.396 × NAP − BCD) + (2.340 × LALU − BCD), for k = 4
28.934 + (2.396 × NAP − BCD) + (2.340 × LALU − BCD), for k = 5
27.773 + (2.396 × NAP − BCD) + (2.340 × LALU − BCD), for k = 6
27.988 + (2.396 × NAP − BCD) + (2.340 × LALU − BCD), for k = 7

 

a Values in parentheses are the t-ratio of each estimated parameter. 

b NAP-BCD is in category # = 1; otherwise = 0. 

c LALU-BCD is in category # = 1; otherwise = 0. 

d for the eight outcome levels, category eight (35-40) was used as the baseline and its utility function was equal to zero.

As reported in the table, the value of the model 

fit index (Adjusted ρ2) is equal to 0.346. The 

signs and values for estimated coefficients of 

the variables of all models were considered 

reasonable. The Small-Hsiao IIA test 

[Washington, Karlaftis, and Mannering, 2011] 

was conducted, and it was uncovered that the 

multinomial logit model cannot be refuted. In 

addition, it was indicated that the IIA 

assumption among eight categories could not 

be rejected at the 0.10 significance level. 

Table 6 was used to evaluate the accuracy of the 

ML model. The rows of this table show 

different cases; where, the values of the NAP-

BCD and LALU-BCD indicator are equal with 

one. Moreover, the number of observations 

related to each case of the total available 

observations was specified. The last column 

shows the probability of locating BIA in each 

category based on the real observations and 

models. The numbers out of the parentheses 

indicate the values obtained by the real 

observations, and the numbers in parentheses 

pinpoint the results of the model. For example, 

according to the sixth row, in six of 84 

observations, the BCD access point is in the 

range of five to ten km, and the length of BCD 

adjacent land-use is in the range of zero to five 

km. In five of these six observations, the BIA 

was in the range of zero to five km and one case 

was in the range of five to ten km. On one hand, 

based on the real observations, the probability 

of BIA being in the first interval was 83.3%, 

and the probability of being in the second 

interval was 16.7%. On the other hand, based 

on the results of the model, for this specific 

case, the probability of BIA being in the first 

interval (zero to five km) was 77.4%, and the 

probability of being in the second interval (five 

to ten km) was equal with 17.1%. Similarly, the 

results of the model can be compared with the 

real observations in other cases. 
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Table 6. The evaluation of ML model accuracy 

Row 
NAP-BCD 

indicator = 1 

LALU- BCD  

indicator = 1 

Number of 

Observations 

Probability for each Category (%) 

0-5 5-10 10-15 15-20 20-25 25-30 30-35 

1 0-5 0-5 10 
100.0 

(99.2) 

0.0  

(0.2) 

0.0  

(0.2) 

0.0  

(0.1) 

0.0  

(0.2) 

0.0  

(0.1) 

0.0  

(0.0) 

2 0-5 5-10 7 
85.7 

(79.1) 

14.3 

(15.7) 

0.0  

(1.7) 

0.0  

(0.9) 

0.0  

(1.6) 

0.0  

(0.5) 

0.0  

(0.5) 

3 0-5 10-15 1 
100.0 

(78.0) 

0.0 

(1.5) 

0.0 

(17.0) 

0.0 

(0.9) 

0.0 

(1.6) 

0.0 

(0.5) 

0.0 

(0.5) 

4 0-5 15-20 1 
100.0 

(83.8) 

0.0 

(1.6) 

0.0 

(1.7) 

0.0 

(10.0) 

0.0 

(1.7) 

0.0 

(0.5) 

0.0 

(0.7) 

5 0-5 20-25 1 
100.0 

(78.5) 

0.0 

(1.5) 

0.0 

(1.6) 

0.0 

(0.9) 

0.0 

(16.4) 

0.0 

(0.5) 

0.0 

(0.6) 

6 5-10 0-5 6 
83.3 

(77.4) 

16.7 

(17.1) 

0.0  

(1.7) 

0.0  

(0.9) 

0.0  

(1.7) 

0.0  

(0.5) 

0.0  

(0.7) 

7 5-10 5-10 3 
66.7  

(3.9) 

33.3 

(93.2) 

0.0 

(0.9) 

0.0 

(0.5) 

0.0 

(0.9) 

0.0 

(0.3) 

0.0 

(0.3) 

8 5-10 10-15 5 
0.0 

(16.2) 

60.0 

(37.1) 

40.0 

(38.6) 

0.0  

(2.0) 

0.0  

(3.6) 

0.0  

(1.1) 

0.0  

(1.4) 

9 5-10 15-20 3 
0.0 

(19.2) 

66.7 

(44.1) 

33.3 

(4.4) 

0.0 

(25.1) 

0.0 

(4.2) 

0.0 

(1.3) 

0.0 

(1.7) 

10 10-15 0-5 10 
80.0 

(76.2) 
0.0 (1.5) 

20.0 

(18.6) 

0.0  

(1.0) 

0.0  

(1.6) 

0.0  

(0.5) 

0.0  

(0.6) 

11 10-15 5-10 4 
0.0 

(16.1) 

50.0 

(35.1) 

50.0 

(40.7) 

0.0 

(2.0) 

0.0 

(3.6) 

0.0 

(1.1) 

0.0 

(1.4) 

12 10-15 15-20 3 
0.0 

(18.4) 

0.0 

(3.9) 

66.7 

(46.6) 

33.3 

(24.1) 

0.0 

(4.1) 

0.0 

(1.3) 

0.0 

(1.6) 

13 10-15 20-25 1 
0.0 

(15.9) 

0.0 

(3.3) 

0.0 

(40.1) 

100.0 

(2.0) 

0.0 

(36.3) 

0.0 

(1.1) 

0.0 

(1.3) 

14 10-15 25-30 3 
0.0 

(20.5) 

0.0 

(4.3) 

66.7 

(51.7) 

0.0 

(2.6) 

0.0 

(4.5) 

33.3 

(14.7) 

0.0 

(1.7) 

15 10-15 30-35 1 
0.0 

(19.9) 

0.0 

(4.1) 

0.0 

(50.1) 

100.0 

(2.5) 

0.0 

(4.4) 

0.0 

(1.4) 

0.0 

(17.6) 

16 15-20 0-5 6 
100.0 

(82.6) 

0.0  

(1.7) 

0.0  

(1.8) 

0.0 

(11.0) 

0.0  

(1.7) 

0.0  

(0.5) 

0.0  

(0.7) 

17 15-20 5-10 5 
40.0 

(19.4) 

60.0 

(42.1) 

0.0  

(4.5) 

0.0 

(26.8) 

0.0  

(4.3) 

0.0  

(1.3) 

0.0  

(1.6) 

18 15-20 15-20 1 
0.0 

(6.2) 

0.0 

(1.3) 

0.0 

(1.4) 

100.0 

(88.8) 

0.0 

(1.4) 

0.0 

(0.4) 

0.0 

(0.5) 

19 15-20 20-25 4 
0.0 

(19.0) 

0.0 

(4.0) 

0.0 

(4.4) 

50.0 

(26.2) 

50.0 

(43.5) 

0.0 

(1.3) 

0.0 

(1.6) 

20 15-20 25-30 4 
0.0 

(26.0) 

0.0 

(5.5) 

0.0 

(6.0) 

50.0 

(35.9) 

50.0 

(5.7) 

0.0 

(18.7) 

0.0 

(2.2) 

21 15-20 35-40 1 
0.0 

(31.3) 

0.0 

(6.5) 

0.0 

(7.2) 

0.0 

(43.2) 

100.0 

(6.9) 

0.0 

(2.2) 

0.0 

(2.7) 

22 20-25 0-5 2 
100.0 

(76.8) 

0.0 

(1.6) 

0.0 

(1.7) 

0.0 

(0.9) 

0.0 

(17.9) 

0.0 

(0.5) 

0.0 

(0.6) 

23 20-25 25-30 1 
0.0 

(20.9) 

0.0 

(4.4) 

0.0 

(4.8) 

0.0 

(2.6) 

0.0 

(50.5) 

100.0 

(15.0) 

0.0 

(1.8) 

24 25-30 0-5 1 
0.0 

(86.5) 

0.0 

(1.7) 

0.0 

(1.9) 

0.0 

(1.1) 

0.0 

(1.8) 

0.0 

(6.3) 

100.0 

(0.7) 

5.4.  Discussion 

Generally, there are various land-uses in the 

marginal areas of Iranian cities such as 

residential, industrial, agricultural, and 

commercial areas. Furthermore, non-adjacent 

land-uses are also connected to the main road 

by the secondary roads. The number of access 

points and the length of land-uses adjacent to 

the road usually decrease along with getting 

more distant from the cities.  Previous studies 
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confirm the relationship between the reduced 

number of access points and the length of 

adjacent land-uses with reduced rural road 

accident rates [Saheli and Effati, 2021; Singh et 

al., 2020; Haghani, Jalalkamali, and Berangi, 

2019; Ehsani-Sohi, Dashtestaninejad, and 

Khademi, 2019; Singh et al., 2018; Fitzpatrick, 

Lord, and Park, 2010; Gundogdu, 2010]. 

According to the results of this study, two 

factors of access points and the length of 

adjacent land-use, have the most significant 

impact on determination of BIA. The effect of 

these factors was measured using the 

cumulative break-point curve of the access 

points along with the cumulative break-point 

curve of the length of land-uses adjacent to the 

road. However, in addition to these factors, the 

variable of average traffic volume, is also 

known as an effective factor on BIA in the 

linear regression model. 

Regarding the coefficient of the average traffic 

volume in the linear regression model, 1% 

increase in traffic volume, results in increasing 

0.008 times of the existing volume in BIA. 

When the average traffic volume of the 

highways is 212 veh/hr/ln, along with 1% 

increase in volume, the rate of BIA increase 

would be equal with 1.696%. By examining the 

coefficient of BCD access point, it can be 

claimed that along with elevating the distance 

of BCD access point from the nearest city by 

1%, the BIA increases by 0.405 times from the 

existing value. Therefore, considering the 

average of BCD access points (9.9 km), BIA 

increases on average by 4.01%. Similarly, 

concerning the average of BCD for the length 

of adjacent land-use (9.4 km), an increase of 

1% in the length of BCD adjacent land-use 

leads to 5.123% increase in BIA.  

In the ML model, the signs of descriptive 

variables are positive, which means that as the 

distance of cumulative break-points' curve of 

access points and adjacent land-use from the 

city increases, the probability  of the break-

points to be farther from the city as well as the 

BIA increases. 

6. Models' Validation 

For the model validation, 20% of the whole data 

was reserved. The output of the OP model 

determines the interval in which the BIA 

places. In the ML model, the most possible 

category to occur determines the model output. 

Also, to compare the results of the linear and 

logistic regression models, the output of the 

linear regression model was reported as 

intervals. For example, if the BIA value from 

the linear regression model for an observation 

is seven km (i.e. the boundary of the marginal 

area affecting the road accidents is seven km 

from the origin or destination city), the BIA of 

the road is placed in the five to ten km interval. 

Table 7 shows the values of MAD and RMSE 

for the linear and logistic regression models. 

The computed MAD values of observed and 

predicted BIA intervals were ranged from 0.37 

to 0.44. The results were also reported for 

RMSE (ranging from 0.81 to 0.94). Regarding 

the interval rate (1-8), the deviation results 

seem to be reasonable. 

From the results, it can be seen that all three 

models have approximately the same accuracy 

in predicting the BIA category. However, since 

the linear regression model can provide the 

output as a continuous value, it is more efficient 

in estimating BIA. In addition, due to the APO 

violation in the OP model, it is recommended to 

use the ML model as a logistic regression 

model for prediction of the BIA. 

Table 7. The Models' Validation by MAD and 

RMSE Measures 

Model MAD RMSE 

Linear Regression 0.37 0.81 

Ordered Probit 0.44 0.93 

Multinomial Logistic 0.40 0.94 

7. Conclusion 

Considering previous studies focused on high 

proportion of the role of the cities' surrounding 
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areas in the total rural road accidents in Iran, 

these areas should be regarded as marginal 

areas affecting the rural road accidents. To do 

so, determining BIA is of great importance; 

since, gaining a better understanding of the 

marginal zones around Iranian cities, and taking 

appropriate safety measures based on their 

specifications, not only reduces the rural road 

accidents and fatalities, but also prevents the 

costs associated with road safety, particularly 

having serious economic problems in Iran. 

Therefore, this study proposed suitable models 

to predict the value of BIA for the rural roads in 

Iran. To achieve this end, the accident data 

(during one year from March 2017 to March 

2018), and required information from the rural 

roads was used. The linear regression method 

was applied to develop the BIA prediction 

model. According to the results, the main 

factors affecting the BIA consist of the number 

of access points, the length of adjacent land-

use, and the average traffic volume. The 

goodness of fit index of the model was 0.737. 

In addition, the t-test analysis confirmed the 

significance of all independent variables with a 

confidence level of 95%. 

Then the logistic regression method was used to 

develop the BIA prediction model. In this case, 

instead of considering the BIA as a continuous 

value, the probability of being within a certain 

range of first or last segment of the road was 

defined. For this purpose, the road segments 

located at the margin of the cities were divided 

into eight segments of five km. Due to the 

ordered nature of dependent variable, the OP 

method was first adopted to develop a logistic 

regression model. Although, the results of 

variables' significance analysis in the OP model 

and the value of the model's fit index (0.379) 

indicated a high utility of the model; however, 

because of violation of ordered models' basic 

assumption, the OP model was rejected, and the 

ML method was used to develop the logistic 

regression model. According to the results of 

the research done on the significance of 

variables, the value of the fit index (0.346), and 

the IIA assumption were able to confirm the 

ML model. Based on the outcomes of the 

model, the main factors affecting the BIA 

consisted of the number of access points and the 

length of adjacent land-use along the road. 

The analysis of significant variables at 95% 

confidence level, revealed that the access 

points' density, and the length of adjacent land 

uses are the most significant variables affecting 

the BIA. These factors lead to different values 

of BIA for different roads. While previous 

studies considered 30-km boundary as BIA for 

all types of roads and cities [Ehsani-Sohi, 

Dashtestaninejad, and Khademi, 2019; 

Dashtestaninejad, Amiri, and Ehsani-Sohi, 

2018; Davoodi and Ahmadi, 2015; 

Afandizadeh and Golshan-Khavas, 2006; 

Shafabakhsh and Mousavi, 2006]. 

The MAD and RMSE indices were used for 

validating the models. The results of validation 

showed that all three models have almost the 

same accuracy in predicting BIA. However, 

since the linear regression model is better able 

to provide the output as a continuous value, it is 

more efficient in estimating BIA. 

This study was the first attempt to define the 

concept of BIA and to determine it for various 

types of roads using the modeling approach. 

Further scientific works applying other 

modeling methodologies may contribute to a 

better perception of these areas around the 

cities. This may help the researchers to compare 

different outcomes and decide what is best to be 

taken. Investigating the fatalities due to 

accidents at the entrances of cities and 

determining the BIA on different roads with 

different characteristics based on casualties is 

another thoughtful issue that could be 

addressed in future studies. 
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