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ABSTRACT 
The travel demand matrix, also known as an origin-destination matrix (OD matrix), is essential in 

transportation planning. Given their nature and extent of operation, direct methods of estimating the matrix 

often impose unusually high costs in terms of both time and human resources. Thus, over the past three 

decades, numerous attempts have been made to propose indirect methods of estimating and updating the 

OD matrix. Using traffic counts to estimate the OD matrix is one of those indirect methods. However, 

because there are insufficient of traffic counts, indirect methods mostly lead to multiple OD matrices. One 

way to overcome this drawback is to use a previously estimated matrix from available data (called the old 

matrix) for new matrix estimation. Since uncongested networks rarely suffer from congestion, they have 

not been at the center of attention by researchers and transportation planners; thus, no old OD matrix is 

available for these networks. This study proposes a two-stage approach for estimating the OD matrix on 

uncongested networks. Firstly, an initial OD matrix is built using a travel distribution model (e.g., gravity 

model) together with local socio-economic information and available traffic counts across the network. 

Secondly, by considering budget constraints and using Bayesian inference, the optimum counting sensor 

locations are determined and by applying the collected information and the precision of the initial OD 

matrix is improved. To evaluate the proposed solution, the algorithm is then applied to the Sioux Falls 

network. The results prove the efficiency and precision of the approach. 

 

Keywords: OD matrix estimation; sensor location problem; counting sensor; uncongested networks; Sioux 

Falls network 
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1. Introduction 
Due to increment in urban areas, 

especially in the cities in developing 

countries, the utilization of cars is 

increasing, resulting in many 

problems like congestion, pollution, noise 

cost, and more side effects (Hafezi et al. 

2013). Also, the worldwide population 

growth and economic developments of the 

past decades have led to a substantially 

increased demand for transportation [Elyasi 

et al. 2018]. Identifying accurate OD 

matrices is one of the most important and 

challenging problems in transportation 

planning and traffic management [Kim et al. 

2018]. The elements of this matrix contain 

the demand of traffic flow from origins 

indexed by rows, to destinations, indexed by 

columns [Michau et al. 2017]. This matrix is 

used as a critical source of input information 

to evaluate traffic management and policy 

measures [Antoniou et al. 2016]. OD matrix 

data can be collected through both direct and 

indirect approaches. Direct approaches are 

divided into three categories: i) 

observational studies; ii) questionnaire 

surveys; and iii) person interviews. Frequent 

data collection via direct methods is highly 

expensive [Hadavi and Shafahi, 

2016]. Moreover, the interval between two 

consecutive surveys is extremely long. 

Therefore, it is quite difficult to derive 

reliable OD matrices for the intervening 

years [Ge and Fukuda, 2016]. This is why 

indirect approaches for updating and 

modifying the OD matrix have received 

more attention in recent years. Among the 

indirect methods, mathematic models 

enhanced with direct traffic counts have 

recently grown in popularity. Using traffic 

counts is an appropriate approach in terms of 

data availability, avoiding traffic 

interruption during data collection, low 

costs, and the accuracy of the collected data 

[Xie, Kockelman and Waller, 2011] making 

it a popular OD estimation choice for 

researchers during the last three decades. 

However, when applying indirect 

approaches, the number of unknown 

variables (i.e., the number of network OD 

pairs) often exceeds that of the known 

variables (i.e., traffic counts, even if 

observed on all network links), making the 

model a non-deterministic problem [Gentili 

and Mirchandani, 2011; Castillo et al. 2010] 

and resulting in multiple demand matrices.  

This means that the majority of OD flows 

will have infinite answers, all of which 

conform to traffic flow conservation law. 

The issue has been studied extensively. To 

yield a reliable and unique OD matrix, some 

authors propose the application of auxiliary 

data such as an initial OD matrix estimated 

from previous studies. One can expect such 

matrices to be available for urban areas; 

however, the number of studies is limited 

across uncongested networks because of 

fewer congestion problems and limited 

research funds spent beyond urban 

boundaries. In most cases, the only available 

data for uncongested networks are those 

collected from a limited number of roads 

where permanent sensors are installed. 

Subsequently, there are only a few roads for 

which traffic counts can be collected. On the 

contrary, new technologies like cell phones 

and in-vehicle GPS have enabled accurate 

data collection and reliable information at 

low cost, while due to the low penetration 

rates of these devices among transportation 

networks’ users, excessive costs and the 

probability of statistical bias for specific 

social groups (such as young people or 

business people), applying these data, face 

some restrictions [Bauer et al. 2018]. 
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Since the accuracy of the estimated OD 

matrix depends on the quality and quantity 

of collected data, determining the number 

and the location of counting sensors is 

critically important [Larsson, Lundgren and 

Peterson, 2010]. Clearly, counting traffic 

volumes on all network links is the best 

option for reliable OD matrix estimation. 

However, given budget limitations, it may 

not be realistic to deploy sensors densely 

over the entire network for practical 

applications [Bao et al. 2016]. The problem 

for finding the best counting sensor location 

to achieve maximum possible data 

collection on a given network is known as 

the network sensor location problem [Viti et 

al. 2014].  

In this study, first, an initial OD matrix is 

estimated by applying a travel distribution 

model whose coefficients are estimated 

using local socio-economic information and 

traffic counts obtained from existing 

counting sensors. Second, regarding budget 

limitations, a limited number of network 

links (other than those with existing 

counting sensors) are selected for traffic 

volume data collection. Finally, the data 

acquired in the second step are used to 

improve the accuracy of the initial matrix. 

The remainder of this paper is organized as 

follows: Section 2 briefly surveys the 

literature dealing with the principal aspects 

of our model. Section 3 presents the methods 

for solving the OD matrix estimation 

problem by applying socio-economic 

information and traffic counts. Section 4 

reports the results obtained from running the 

proposed models on the Sioux Falls network 

to analyze model behaviors.  Finally, we 

conclude the paper with a discussion of 

avenues for future research in Section 5. 

 

2. Literature Review 

In this paper, firstly, an initial OD matrix is 

built using a mathematical travel distribution 

model and, secondly, the precision of this 

matrix is improved through traffic counts on 

the selected optimal links. In the following 

subsections, the relevant literature is 

reviewed.    

 

2.1 Travel Demand Matrix Estimation 

Models 
Conventional methods for OD matrix 

estimation have been categorized by [Doblas 

and Benitez, 2005] as follows: 

2-1-1 Direct methods such as data surveys 

Although direct methods have so far been 

extensively used across the world, a variety 

of limitations like high costs in terms of both 

time and human resources have challenged 

the use of these methods. This has 

encouraged researchers to try better 

solutions for OD matrix estimation. 

Similarly, [Stopher and Greaves, 2007] 

stated that questionnaire surveys might 

cause meaningful errors in matrix estimation 

because of small sample size, high rate of 

refusals, unreported travels, etc. 

Furthermore, [Cools, Moons and Wets, 

2010] indicated that OD matrix estimation 

based on interview surveys is biased even 

when large samples are used and the 

resulting matrix estimation is often 

unreliable. Given these drawbacks, direct 

methods can be applied to make an initial 

OD matrix or to provide supplementary data 

for other OD matrix estimation methods.  

2-1-2 Using travel distribution models 

By applying both current inter-zonal travel 

values and growth factors, growth models 

can predict future inter-zonal travel 

interchange. [Wilson, 1967] introduced a 

model based on Newton’s gravity law 

according to which the travel value between 

two traffic zones is directly proportional to 

the relative attractiveness of the zones while 

inversely proportioned to the general travel 



Hadi Karimi , Seyed-Nader Shetab-Boushehri, Ramin Nasiri  

 

International Journal of Transportation Engineering,  

Vol. 8/ No.2/ (30) Autumn 2020 

168 
 

cost. In his approach, the general cost of a 

travel can be expressed as travel time, 

distance, or the cost of fuel or ticket. Eq. (1) 

which presents one of the simplest forms of 

gravity models, is used for OD matrix 

estimation. 

(1) 
2

ij i j ijT PP d 

where 
iP  and 

jP  are the populations of 

zones i  and j  respectively; 
ijd  is the 

distance between zone i  and zone j ; and   

is the model calibration constant.  Assigning 

this matrix to the network yields Eq. (2). 

(2) 
2 2( ) ( )a a

a ij i j ij ij i j ij

ij ij

V p PP d p PP d    

where 
aV  is the traffic volume on link a  and 

a

ijp  is the proportion of travels between zone 

i  to zone j  which use link a .  In Eq. (2), 

the only unknown parameter is  , which 

can be estimated using zone population data 

and traffic counts. 

2-1-3 Using traffic counts for updating an 

old OD matrix. 

[De Grange, González, and Bekhor, 2017] 

identified two traditional modeling 

approaches to estimate the OD matrix by 

relying on traffic counts: maximum entropy 

or minimum information and statistical 

techniques.  

The first approach includes maximum 

entropy or minimum information models. It 

involves mathematical models that use 

maximum entropy from the basic OD matrix 

as the objective function in order to estimate 

a matrix having maximum consistency with 

the collected information (traffic counts). As 

a downside, these methods fail to take into 

account the uncertainty associated with 

traffic counts and the information in the 

basic matrix, which may include erroneous 

data and therefore impact the results [Bera 

and Rao, 2011]. Some researchers have used 

maximum entropy methods to estimate the 

OD matrix (e.g. [Tang and Zhang, 2013] and 

[Ryu et al. 2014]).  

The second approach (i.e., statistical 

models) uses techniques like maximum 

likelihood, generalized least square, and 

Bayesian inference to estimate the OD 

matrix. [Castillo, Menéndez and Jiménez, 

2008] classified statistical methods into 

classic statistical models and Bayesian 

statistical models. The most important 

benefit of this approach is considering the 

variability of input data. Traditional 

statistical models assume traffic flows as 

multivariate random variables belonging to a 

probability distribution such as Poisson, 

Gamma, multivariate normal, etc. Thus, the 

OD matrix estimation problem can be 

converted to a usual statistical parameter 

estimation problem. On the other hand, in 

Bayesian inference methods, previous 

understandings are combined with new 

observations to generate new insights [Bera 

and Rao, 2011]. In the Bayesian inference 

method, an initial OD matrix is calculated as 

a prior probability distribution ( Pr( )T ) of 

the OD matrix while traffic counts from 

selected links are considered as another 

source of data with probability ( | )L V T . 

Bayes’ theorem, then, combines two sources 

of information so that the posterior 

probability of observing the OD matrix T  

conditional on the observed counts of certain 

links in the network ˆ( | )f T V  is obtained as 

follows:  

(3) ˆ ˆ( | ) ( | ).Pr( )f T V L V T T 

Similar to traditional statistical models, 

Bayesian inference methods assume traffic 

flow as multivariate random variables with 

the only difference that in the latter, 

parameters are random variables as well. 

Bayesian inference methods have been used 

for OD matrix estimation by many 

researchers (e.g. [Wei and Asakura, 2013] 
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and [Perrakis et al. 2015]). Since this study 

aims to improve an initial matrix using 

Bayesian inference, this method is discussed 

in depth in the third section.   

 

2.2  Network Sensor Location Models 
OD matrix estimation involves optimally 

locating sensors on a transportation network 

to measure traffic counts [Ye and Wen 

2017]. The network sensor location problem 

is a bi-level iterative problem. In the higher 

level, the optimal location of counting 

sensors is determined while, in the lower 

level, the best estimation of link flows is 

made using collected data from the counting 

sensors in the previous level. Accordingly, 

the sensor location problem for matrix 

estimation involves two problems: sensor 

location and estimation.  

The first attempts to determine the number 

and optimal locations of counting sensors 

were made by [lam and lo, 1990]. Their 

method was developed by [Yim and Lam, 

1998]. The authors introduced a heuristic 

algorithm in which sampling methods are 

used to prioritize the best network links for 

sensor location. By assuming that traffic 

flows between each OD pair select the 

shortest path, [Hodgson, 1990], they tried to 

reduce the complexity of sensor location 

problem and used the heuristic approach to 

solve the problem for a network comprised 

of 25 nodes. Based on the same assumption, 

two other studies [Berman, Bertsimas and 

Larson, 1995] developed Hodgson’s model 

to determine the number and optimal 

location of counting sensors. Their goal was 

to choose the links with the highest 

collectible information. This approach was 

premised on the assumption of available 

traffic flow volume data for all network 

paths and subsequently for all OD pairs, 

which means that its application is only 

restricted to small networks regarding the 

criticality of volume data availability.  

Using reliability theory, [Yang, Iida, and 

Sasaki, 1991] evaluated the estimated OD 

matrix based on maximal possible relative 

error (MPRE). Having precisely analyzed 

the characteristics of the MPRE index with 

regards to the optimum counting sensor 

locations, they formulated the MPRE using 

a simple quadratic programming problem 

and indicated that the MPRE is in effect the 

upper boundary of the actual relative error 

for the actual OD matrix. One of the most 

prominent investigations on the traffic 

sensor location problem was performed by 

[Yang and Zhou, 1998] based on previous 

research conducted by [Yang, Iida and 

Sasaki, 1991]. [Yang and Zhou 1998] 

proposed a systematic methodology for 

determining the number and optimal 

locations of counting sensors which finally 

led to defining four applicable rules 

including OD covering rule, maximal flow 

fraction rule, maximal flow intercepting 

rule, and link independence rule. Future 

studies like [Larsson, Lundgren and 

Peterson, 2010] and [Gentili and 

Mirchandani, 2011] proposed 

methodologies in line with Yang and Zhou’s 

approach. Regarding the impossibility of full 

coverage of the all OD pairs in medium to 

large networks, and considering the fact that 

some OD pairs contain more information, 

added average data concept and sensor 

installation costs to previous models. 

Moreover, [Castillo, Menéndez and 

Jiménez, 2008] proposed procedures based 

on Bayesian inference in order to select 

optimum links for installing counting 

sensors. They used Bayesian networks 

together with traffic counts collected from 

selected links to estimate the OD matrix in 

Sociedad, Spain. Their approach is 
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appropriate for small networks but it is time-

consuming in medium to large networks.  

 

3. Methods 
The underlying assumption in this study is 

that no initial OD matrix exists for the 

studied area, but socio-economic 

information is available. Using the available 

data, first, a primary model is constructed in 

order to estimate an initial OD matrix. 

Second, the proposed algorithm for 

determining the number and location of 

additional counting sensors is explained. 

The data obtained from these extra counting 

sensors are used to improve the accuracy of 

the initial OD matrix.  

 

3.1  Initial OD Matrix Estimation 

using Socio-Economic Information 
It is possible to estimate an initial OD matrix 

by constructing an appropriate mathematical 

model for inter-zonal travel distribution 

across a given uncongested network. A 

number of mathematical models have been 

developed to sketch travel distribution 

across the zones of a given area, among 

which the gravity model is one of the most 

well-known ones. The general form of the 

gravity model is as follows: 

(4) , ,( , )ijC

ij i j i j ijT AB O D e i I j J i j W





     

where 
ijT  is the number of travels from zone 

i  to zone j ; 
iO  is the number of travels 

produced in zone i ; 
jD  is the number of 

travels attracted at zone j ; 
ijC  is travel cost 

from zone i  to zone j ; I  denotes origins 

set, J  denotes destinations set; W  denotes 

OD pairs set;   is the model parameter; 
ij  

is structural model error; and 
iA  and 

jB  are 

scale parameters for zone i  and j , 

respectively, which act as moderator and are 

calculated through the Eq. (5). 

(5) 

1

1

( )

( )

ij

ij

C

i j j

j J

C

j i i

i I

A B D e

B AO e





 



 










 

Considering 
ip  and 

ie  as population and 

employment of zone i  respectively, and 

assuming simple mathematical models for 

travel production and attraction of zones i  

and j  are as Eq. (6). 

(6) 
1 2

3 4

i i i

j j j

O p e

D p e

 

 

 

 
 

The inter-zonal travel generation calculated 

from gravity models could be linked to the 

regional socio-economic information 

through Eq. (7). 

(7) 

1 2

3 4

i i i

j j j

O p e

D p e

 

 

 

 
 

5

5

1

1

( )

( )

ij

ij

C

i j j

j J

C

j i i

i I

A B D e

B AO e





 



 










 

5 ijC

ij i j i j ijT AB O D e





  

If the values of 
1  to 

5  can be estimated 

by using auxiliary data, an initial OD matrix 

for the study area can be estimated using Eq. 

(7) along with applying socio-economic and 

employment information associated to 

traffic zones.  

With regards to the gravity type travel 

distribution model, there are two important 

issues. Considering the theoretical base of 

the gravity model, it can be proved that the 

OD matrix obtained using this model is most 

likely to occur [Hong and Jung, 2016]. 

Second, solving Eq. (4) seems to be difficult 

since it is nonlinear. However, using an 

iterative algorithm (called AB) [Wilson, 

1967; Kanafany, 1983], it can be solved. 

Algorithm AB to determine the values of 
iA  

and 
jB  is as follows: 

Step 0: set 1jB j J   
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Step 1: calculate iA
 values using equation 

5 1( ) ,ijC

i j j

j J

A B D e i I
 



   

Step 2: calculate jB
 values using equation 

5 1( ) ,ijC

j i i

i I

B AOe j J
 



 
 

Step 3: stop if the difference between each 

iA  and 
jB  in the two consecutive iterations 

is less than the threshold value; otherwise, 

go back to step 1. 

Determining the travel cost between zones is 

also essential and is proportionate to the path 

traveled by the passenger. Assuming the 

passenger travels across the shortest possible 

path, 
ijC  in the Eq. (7) will be the cost of the 

shortest path from zone i  to zone j . If all 

passengers in the network are assumed to 

travel through reasonable paths to get to their 

destinations, 
ijC  can be defined as the 

average travel cost from zone i  to zone 
j
 

and can be calculated as follows: 

(8) , , ( , )
ij

ij ij r ij r

r R

C C P i j W


  

where ,ij rC
 is the travel cost from zone i to 

zone j  via the rational path r ; 
,ij rP  is the 

passengers proportion travel from zone i  to 

zone j  through rational path r ; and 
ijR  is 

the sum of all rational paths between zone i  

to zone j . 

In this study, passengers are assumed to 

travel through rational paths that are 

obtained from the Dial’s traffic assignment 

[Ortuzar and Willumsen, 2011]. In this 

assignment, 
,ij rP  value is calculated as 

follows: 

(9) 
,

,

,

exp( )

( )
ij

ij r

ij r

ij r

r R

C
P

C










 

where   is determined based on network 

characteristics. In this study,   and other 

model parameters are estimated 

simultaneously. 

The majority of previous research on the 

estimation of the OD matrix using traffic 

counts has applied the least squares 

approach, in which a bi-level model 

structure is used; the OD matrix is calculated 

in the higher level, and in the lower one, the 

estimated matrix is assigned to the 

transportation network. 

The general structure of the bi-level 

approach is formulated as follows 

[Abrahamson, 1998]:  

(10) 1 1 2 2
ˆ ˆmin ( , ) ( , ) ( , )F T V F T T F V V  

 
. . ( )s t V assign T 

In this model, the OD pair’s flow is 

estimated by minimizing the two 

corresponding distance values: the distance 

between the estimated matrixT and initial 

matrix T̂  (using distance function 1
ˆ( , )F T T

) and the distance between estimated volume

V and links’ observed volumeV̂ (by 

distance function 2
ˆ( , )F V V ). In the 

objective function, the weight coefficients 

1  and 2  are assigned to distance 

functions whose values depend on the 

reliability of the available data. The 

constraint defined in Eq. (10) shows the 

overall relationship between the estimated 

links’ volumes and the estimated OD matrix.  

To estimate travel distribution model 

parameters in uncongested networks in this 

study, Eq. (11) is proposed based on Eq. (10) 

with two assumptions as follows: 

1. There is no access to an initial OD 

matrix for the study area, thus 
1  =  0 and 

2  = 1; 
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2. Network users are assumed to travel 

through rational paths to get to their 

destinations. 

(11) 
5

5

5

2

,

,

,

, ,

1 2

3 4

1

1

ˆmin ( )

exp( )
. . ,( , )

( )

( , )

( )

( )

, ,

ij

ij

ij

ij

ij

a a

a A

ij r

ij r ij

ij r

r R

ij ij r ij r

r R

i i i

j j j

C

i j j

j J

C

j i i

i I

C

ij i j i j

V V

C
s t P r R i j W

C

C C P i j W

O p e i I

D p e j J

A B D e i I

B AO e j J

T A B O D e i I j J











 

 







 



 








  



 

  

  

 

 

  











, ,

( , )

1 1 1 1 1

( , )

, , , , 0

ij

a

a ij r ij r ij

i j W r R

i j W

V P T a A

    

 



 



 

 

where 
aV  is volume of link a  resulting from 

traffic assignment; ˆ
aV  volume of link a  

obtained from counting sensors ( a A ),

,

a

ij r  is binary variable which take 1 if the 

link a  located in path r  from zone i  to zone 

j
 otherwise takes 0, A  is the set of network 

links with sensors, 
1 2 3 4 5, , , ,      are 

model parameters, and   is the Dial’s traffic 

assignment model’s parameter obtained by 

solving Eq. (11). Other parameters are 

defined as before. 

 

3.2  Improving the Accuracy of the 

Initial Matrix 
In section 3.1, we explained the procedure of 

estimating the initial OD matrix ( T̂ ) using 

only socio-economic information and traffic 

counts (using existing traffic sensors). In this 

section, the approach for improving the 

quality of the initial OD matrix is explained. 

Among many approaches for matrix quality 

improvement, one is selecting extra 

optimum links to use their traffic count data 

(i.e., extra links other than those with 

existing sensors). In the current study, a two-

step methodology is applied to improve the 

initial OD matrix ( T̂ ) using traffic counts. In 

the first step, the optimal links are selected 

and, then, using their traffic counts the initial 

OD matrix ( T̂ ) will be updated and 

improved.  

As mentioned in the literature review 

section, a variety of models and 

methodologies have been used for optimal 

link selection for sensor location and OD 

matrix improvement; one of the most widely 

used methods is the Bayesian inference 

method. Using the methodology proposed 

by [Castillo, Menéndez and Jiménez, 2008], 

extra links are selected and their traffic 

counts are used. In this methodology, with 

some assumptions, the relationships 

between variance-covariance matrices and 

the OD flows are calculated by Eqs. (12)- 

(15) [Castillo, Menéndez, and Jiménez, 

2008]:  

(12) 2

TT U KK D     

(13) t

TV TT    

(14) 
VT TV   

(15) t

VV TT D      

where U is the mean flow of the entire 

network; 2

U  is the variance of variable U ; 

K  is the relative weights of the OD pairs; 

β  is the  assignment matrix with elements 

w

a  and denotes the portion of travels 

between OD pair w  which pass through the 

counted linka ; D
 and D  are the variance-

covariance matrices of independent random 

variables   and  respectively, which are 

assumed to be diagonal, 
TT  shows the 
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variance-covariance matrix of OD pair 

flows; 
TV  denotes the variance-covariance 

matrix of OD pair flows and link flows; and 

VV  shows the variance-covariance matrix 

of link flows. 

Additionally, provided that some of the 

variables are observed, the Bayesian 

approach can be used to update the mean and 

variance-covariance matrix of OD flows in 

the network through Eqs. (16)- (17). 

(16) 1
ˆ ˆ ˆ ˆˆ|

ˆˆ( ( ))TT V v TV VV
v V T  


     

(17) 1
ˆ ˆ ˆ ˆ ˆˆ| TTT V v TV VV VT




       

where, v̂  is the vector of the traffic counts 

passing through observed network links and 

ˆ ( )V T is the vector of volumes obtained 

through an assignment for the same links. 

Using the above equations, [Castillo, 

Menéndez and Jiménez, 2008] introduced 

algorithms for locating optimal links and 

matrix estimation. [Karimi, Ebrahimi, and 

Shetab Bousshehri, 2017] put forward 

suggestions for improving the efficiency of 

these algorithms particularly for large scale 

networks.  

3-2-1 Selecting extra optimum links 

If the links with existing counting sensors 

are named as set A , new links must be 

selected and added to set A to be used for 

improving the initial OD matrix using their 

observed traffic counts. Regarding budget 

constraints, only h  sensors could be added to 

existing ones. For network sensor location, 

the algorithm proposed by [Castillo, 

Menéndez and Jiménez, 2008] is used with 

some modifications as follows: 

In the original algorithm, first, the 

correlation coefficient matrix (  ) with 

components 
TV  is calculated using the 

variance-covariance matrix formulated as 

Eqs. (12)- (15). Second, the component 

corresponding to the biggest correlation 

coefficient in the correlation coefficient 

matrix (  ) is selected as the optimal link for 

counting. Third, the selected link is added to 

the existing links and the correlation 

coefficient matrix (  ) is updated using Eq. 

(17). If the number of selected links is less 

thanh , the process is repeated to choose the 

next link.  

In Castillo’s approach for sensor location, 

the correlation OD pair flow matrix and link 

volumes are used and the link with the 

largest matrix component is picked as the 

candidate link for sensor location. This link 

provides substantial amounts of information 

for only one OD pair. While at the present 

study, a new index called “sum of the 

differences of the corresponding OD pair 

variances in the network within the running 

step and the previous step” is proposed as an 

appropriate indicator for choosing the 

optimal link in a given step. Accordingly, in 

the Castillo’s first improvement step, instead 

of the link with the largest matrix 

component, the link that yields the highest 

value for the proposed index (i.e. sum of the 

differences of the corresponding OD pair 

variances within the running step and the 

previous step) is selected as the optimum 

link for sensor location.  

3-2-2 Improvement step 

Assuming to put the set of links A  together 

with the selected links obtained from the first 

step in a new set called A , considering the 

initial OD matrix ( T̂ ) as the base matrix, 

volume counts from link set A  as V̂  , then 

the initial OD matrix will by improved using 

Castillo’s algorithm (base algorithm 1) 

through Eqs. (12)- (17). Figure 1 shows a 

flowchart of the proposed algorithm. 
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Figure 1. The proposed algorithm for estimating and improving the OD matrix on uncongested 

networks 

 

4. Results 
In this section, in order to analyze and 

evaluate the proposed algorithm, it is run on 

the Sioux Falls network and the results are 

reported.  

 

4.1 Sioux Falls Transportation 

Network 
In this research, a medium-size Sioux Falls 

network with 24 nodes, 76 links, and 576 

OD pairs is applied which is a typical 

network widely used in transportation 

studies. The required information for this 

network, including link attributes and OD 

matrix, was extracted from data reported by 

[Leblank, 1975]. It is assumed that nodes 1, 

2, 4, 5, 10, 11, 13, 14, 15, 19, 20, 21, 22, 24 

are origin destination nodes. Figure 2 shows 

the Sioux Falls street network of the largest 

city in South Dakota with highlighted nodes 

representing origin destination ones. 
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Figure 2. Sioux Falls transportation network 

 

4.2  Transportation Simulation Program 
The results of the proposed model are 

validated using a simulator program whose 

inputs include the OD matrix built upon 

population data and zonal employment 

vectors within the study area as well as 

traffic counts resulting from assigning this 

matrix on Sioux Falls network. In each run, 

the simulator randomly creates one 

population and one employment vector and 

then, generates the target OD matrix using a 

mathematical model together with 

population as well as employment data and, 

finally, adds a random value as error 

component to the matrix. Afterwards, by 

assuming this matrix as the actual OD matrix 

and assigning it to Sioux Falls network, the 

simulator calculates volumes on the links 

and represents them as if they have been 

collected from network sensors. Thus, in 

each run, the simulator outputs are 

population vector, employment vector, 

actual OD matrix, and traffic counts. 

 

4.3 Estimating the Initial OD Matrix  
In this section, we describe how the 

parameters of Eq. (11) are estimated and 

subsequently evaluate the results. 

Eq. (11), which is a methodical 

programming model is solved with the aim 

of determining parameters 

1 2 3 4 5, , , ,      and  in the travel 

distribution gravity model while assuming 

passengers travel across rational paths to 

reach their destinations. The model is solved 

using the Quasi Newton module in Gauss.   

By determining model parameters, the travel 

distribution model is calibrated and the OD 

matrix can be estimated (regenerated) using 

available socio-economic information ( p  

and e  vectors are obtained from the 

simulator program).  

Using the OD matrix generated by the 

simulator program which is assumed as 

actual OD (T ) the estimated OD matrix 

calculated by Eq. (11) ( T̂ ) can be evaluated. 

To evaluate T̂ and determine the accuracy of 
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the proposed model, the regression equation 

ˆ
ij ijT a bT   is estimated using the OLS 

method and the correlation of two the 

matrices is then determined based on the 

statistical results summarized in Figure 3.  

As can be seen, 
2R  is approaching 1 which 

demonstrates the high accuracy of the 

model.  

Figure 4 depicts the actual and estimated OD 

flows. The results indicate that the proposed 

method enjoys high accuracy in estimating 

the real OD matrix in the Sioux Falls 

network. However, with simply one 

iteration, model reliability cannot be 

approved. Therefore, the simulator was run 

on the studied network 50 times and the 

results were evaluated in order to obtain 

consistent results. Figure 5 depicts the 

values of T  and T̂  for these 50 times 

iterations. Moreover, 
2R  values are shown 

in Figure 6. 

 

 
Figure 3. Actual OD matrix versus Estimated OD matrix for the Sioux Falls Transportation 

Network  

 

 
Figure 4. Actual OD matrix versus Estimated OD matrix for 50 iterations 
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Figure 5. 
2R values after 50 iterations of Eq. (11) 
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4.4 Initial OD Matrix Improvement  
There are two assumptions here: (1) the 

available sensors are installed on links 9, 10, 

25, 26, 47, 48, 57, 58, 73, and 74 (figure 7); 

and (2) due to budget constraints only 10 

more links can be selected for sensor 

installation. The actual OD matrix (T), and 

traffic counts on observed links (V̂ ) can be 

determined using the simulation program, 

population vector (P) and employment 

vector (e). Table 1 summarizes the 

population and employment vector data for 

each corresponding zone. The actual OD 

matrix is also listed in Table 2. 

Subsequently, using the proposed model, the 

initial demand matrix ( T̂ ) is estimated 

whose results are summarized in Table 3.  

To identify the difference between the actual 

OD matrix and the initial OD matrix after 

adding the optimal links for matrix 

improvement, we used 

2 2

( , )

ˆ( )ij ij

i j W

e T T


   index. Before adding 

new links, this index was 88.73 for the 

example being investigated. Using the 

[Castillo, Menéndez and Jiménez, 2008] 

methodology and making the suggested 

improvements, 10 additional links are 

selected, which are displayed in Figure 7. As 

a result, the final improved demand matrix (

T̂  ) was estimated based on the initial 

matrix ( T̂ ), which is summarized in Table 

4. Calculating the 
2e  index, the difference 

between the actual OD matrix (T) and the 

improved matrix ( T̂  ), after incorporating 

the data for 10 links yielded 58.872 which 

shows a decrease compared to 88.73 before 

adding the new links, indicating that the 

information acquired from the selected links 

have led to a considerable improvement in 

the accuracy of the initial matrix. 

 

 
Extra optimum links The location of existing counting sensors 

Figure 6. Sioux Falls network with preinstalled sensors and optimal links selected in the first 

improvement step. 
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Table 1. Zonal population and employment data for the study area 

e P Zone number 

5.3 27.01 1 

9.2 29.1 2 

6.5 15.6 4 

6.2 25.3 5 

9.3 10.9 10 

9.1 24.5 11 

9.4 17.0 12 

7.9 18.4 14 

5.9 28.9 15 

5.4 20.9 19 

8.9 29.8 20 

7.0 19.5 21 

6.8 11.2 22 
5.4 28.9 24 

 
Table 2. The actual travel demand matrix 

 
Table 3. The initial demand matrix 

24 22 21 20 19 15 14 13 11 10 5 4 2 1 OD 

2/98 0/98 0/87 1/72 0/62 0/83 0/49 0/98 2/15 0/73 3/11 2/42 7/81 0 1 

2/27 0/75 0/82 1/25 1/66 2/65 0/95 0/72 1/75 1/25 4/58 2/17 0 7/24 2 

1/18 0/39 0/33 0/62 0/38 0/68 0/58 1/02 2/12 0/83 3/09 0 1/96 2/03 4 

24 22 21 20 19 15 14 13 11 10 5 4 2 1 OD 

3/07 0/78 1/23 1/17 0/31 0/46 0/36 1/46 0/76 0/57 2/93 3/07 11/84 0 1 

2/49 1/01 0/75 0/74 1/44 2/97 0/78 0/62 2/09 0/52 6/28 2/20 0 8/25 2 

1/29 0/45 0/34 0/77 0/15 0/58 0/71 1/07 2/49 1/07 2/84 0 1/98 1/42 4 

1/57 0/58 0/58 0/77 0/88 0/91 1/41 0/99 4/61 2/39 0 4/14 5/53 1/51 5 

0/44 0/22 0/85 0/97 0/97 1/65 1/56 0/68 2/43 0 2/00 0/53 0/95 0/47 10 

3/44 1/30 1/12 1/57 0/56 1/01 1/68 2/82 0 1/61 2/79 3/38 0/59 1/12 11 

1/64 0/90 1/30 1/78 1/23 1/91 0/97 0 4/36 2/01 1/21 0/46 0/39 0/43 13 

1/73 0/58 2/30 3/17 1/15 2/82 0 3/03 2/14 1/34 1/12 0/54 0/78 0/57 14 

2/29 1/85 1/00 0/7 1/84 0 3/7 3/68 2/23 1/72 1/68 0/53 3/43 0/54 15 

0/90 1/02 1/24 4/21 0 3/85 1/90 0/52 0/69 0/85 0/96 0/25 1/23 0/70 19 

2/28 4/32 4/83 0 2/02 4/66 2/87 1/75 0/56 1/50 0/98 0/77 1/35 1/49 20 

0/96 0/94 0 4/09 2/32 2/93 1/73 1/50 1/50 1/06 0/69 0/17 0/40 0/66 21 

1/29 0 1/50 1/60 0/62 0/99 1/08 1/06 0/73 0/33 0/47 0/48 0/70 0/78 22 

0 2/87 1/50 5/03 1/31 0/97 1/45 2/28 2/42 0/99 2/38 2/08 2/17 4/39 24 
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24 22 21 20 19 15 14 13 11 10 5 4 2 1 OD 

1/70 0/45 0/70 0/95 0/85 1/49 1/26 1/27 2/64 1/87 0 3/46 4/64 2/92 5 

0/55 0/30 0/74 1/04 0/62 1/17 0/98 0/75 1/64 0 1/27 0/63 0/86 0/47 10 

2/58 0/97 1/23 1/72 0/93 1/83 1/60 2/84 0 2/15 2/36 2/13 1/59 1/81 11 

1/58 1/01 1/21 1/73 0/95 1/94 1/63 0 2/54 0/88 1/01 0/91 0/58 0/74 13 

1/16 0/74 1/80 2/54 1/42 2/85 0 1/76 1/55 1/24 1/09 0/56 0/83 0/40 14 

1/57 1/01 2/36 3/31 3/84 0 3/36 2/47 2/08 1/75 1/51 0/78 2/74 0/79 15 

1/55 0/99 2/22 3/24 0 3/75 1/64 1/19 1/03 0/9 0/85 0/42 1/67 0/58 19 

3/71 2/37 3/93 0 3/10 3/09 2/81 2/07 1/83 1/46 0/90 0/66 1/21 1/54 20 

1/79 1/15 0 3/76 2/04 2/11 1/90 1/38 1/25 0/99 0/64 0/34 0/76 0/7 21 

1/74 0 0/99 1/96 0/78 0/78 0/67 0/99 0/85 0/35 0/35 0/34 0/59 0/72 22 

   
Table 4. The improved travel demand matrix 

4 22 21 20 19 15 14 13 11 10 5 4 2 1 OD 

2/76 0/96 0/86 1/63 0/56 0/78 0/49 0/97 2/09 0/72 3/11 2/42 10/39 0 1 

2/28 0/75 0/74 1/05 1/06 2/29 0/95 0/75 1/97 1/28 5/83 2/38 0 8/62 2 

1/16 0/38 0/32 0/61 0/35 0/66 0/57 1/02 2/12 0/81 3/09 0 2/02 2/03 4 

1/66 0/46 0/63 0/85 0/70 1/40 1/26 1/37 3/08 1/87 0 3/46 4/61 2/92 5 

0/56 0/30 0/74 1/04 0/57 1/13 0/98 0/80 2/07 0 1/27 0/66 0/86 0/49 10 

2/58 0/97 1/19 1/68 0/81 1/58 1/52 2/84 0 1/82 2/21 2/13 1/60 1/83 11 

1/58 1/01 1/21 1/73 0/90 1/94 1/63 0 2/54 0/85 0/98 0/91 0/58 0/75 13 

1/16 0/74 1/80 2/54 1/26 2/85 0 1/76 1/72 1/24 1/09 0/58 0/83 0/41 14 

1/38 0/93 1/96 2/21 1/53 0 3/36 2/47 2/58 1/76 1/56 0/81 2/77 0/8 15 

1/55 0/99 2/22 3/22 0 4/53 1/72 1/21 1/15 0/92 0/82 0/43 1/27 0/58 19 

3/71 2/37 4/38 0 2/59 3/21 3/04 2/15 2/02 1/52 0/88 0/68 1/08 1/67 20 

1/79 1/15 0 3/76 2/04 2/22 1/90 1/38 1/32 0/99 0/62 0/34 0/72 0/78 21 

1/74 0 1/00 1/93 0/76 0/78 0/68 0/99 0/87 0/34 0/35 0/34 0/63 0/75 22 

0 2/32 2/11 3/98 1/53 1/65 1/42 2/07 3/40 0/84 1/94 1/48 2/96 3/39 24 

 

5. Conclusion 
Throughout this paper we, like the vast 

majority of authors on the subject, have 

considered O-D matrix estimation for 

uncongested networks. The most common 

way to estimate this matrix is to use an initial 

(or old) OD matrix. But in uncongested 

networks, usually, no initial OD matrix is 

available. In this study, to tackle this 

problem, firstly, by applying local socio-

economic information and available traffic 

counts an initial OD matrix is made. 

Secondly, by applying Bayesian inference 

and considering budget constraints, the 

optimum counting sensor locations are 

determined and by applying the collected 

information, the precision of the initial OD 

matrix is improved. 

In this way, a two-step methodology was 

proposed. In the first step, a mathematical 

travel distribution model was calibrated 

using both zonal socio-economic and 

existing traffic counts to obtain an initial OD 

matrix. In the second step, the estimated 

initial matrix was improved by using traffic 

counts collected from additional links on the 

network. For this purpose, after determining 

the number of additional links, regarding 

budget limitations, these links are identified 

through a statistical approach based on the 

Bayesian inference method and finally using 

new links’ traffic count data the initial 

matrix is improved. The results on the Sioux 
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Falls network show that the proposed 

methodology is low-cost and yields precise 

and appropriate OD matrix. 

Future research steps should include 

research along with three main directions. 

The first one is OD matrix estimation by 

combining information collected from 

various types of sensors (both active and 

passive). The second direction of further 

research could focus on the estimation of OD 

pairs flow and considering sensor costs 

(device, installation, and maintenance). The 

third direction for further research involves 

examining large-scale networks to 

understand the efficiency of the proposed 

methodology better. 
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